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ABSTRACT 
 

Steroidal estrogens are potent endocrine disrupting chemicals that are naturally 
excreted by vertebrates (e.g., humans and fish) and can enter natural waters through the 
discharge of treated and raw sewage. Because estrogens are detrimental to aquatic 
organisms at picomolar concentrations, many studies have measured so-called “free” 
estrogen concentrations in wastewater effluents, rivers, and lakes. Yet, to our knowledge, 
no studies have characterized the broader range of estrogens that includes free, 
conjugated, and halogenated forms.  
 

Conjugated estrogens are important because they can be easily converted to 
potent free forms by bacteria in wastewater treatment plants and receiving waters. And 
halogenated estrogens, produced during wastewater disinfection, are only slightly less 
potent than free estrogens but much more likely to bioaccumulate.  
 

We have developed a tandem mass spectrometry method that is capable of 
simultaneously quantifying free, conjugated, and halogenated estrogens at picomolar 
levels in wastewater effluent and coastal seawater. The method was validated using 
treated effluent from the greater Boston metropolitan area, where we found that 
halogenated estrogens represented over 50 % of the total estrogen discharge flux. A 
kinetic model of estrogen halogenation was used to predict the distribution of free and 
halogenated forms in wastewater effluent and suggested that chlorinated estrogens may 
be formed en route to the wastewater treatment plant.  
 

In the receiving waters of Massachusetts Bay, we detected a range of conjugated, 
free, and halogenated forms at concentrations that were well-predicted by dilution near 
the sewage outfall. Farther downstream, we found significantly higher estrone 
concentrations which points to large inputs of estrogens from sources other than sewage.  
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Finally, we have used compound-specific measurements of 13C and 14C in 
commercial and pharmaceutical estrogen preparations to evaluate the potential for using 
carbon isotopes to distinguish between synthetic and endogenous steroids in wastewater 
and other environmental matrices. Our results show that synthetic estrogens and 
progestogens exhibit significantly depleted δ13C values (~ -30 ‰) compared to 
endogenous steroids (-16 ‰ to -26 ‰). This isotopic difference should make it possible 
to apportion synthetic and endogenous hormone sources in complex environments.  
 
 
 
Thesis Supervisor: Philip M. Gschwend 
Title: Ford Professor of Civil and Environmental Engineering, MIT 
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1.1  Motivation 

 Estrogens are potent steroidal hormones that are key for the normal growth and 

development of all vertebrates. Estrogens are naturally excreted from the body, mainly as 

conjugated forms that contain attached sulfate and glucuronide groups, but these forms 

can be rapidly converted back into potent forms by bacteria in wastewater treatment 

plants (WWTPs) and the environment. During wastewater disinfection, estrogens may 

react with chlorine or bromine to create halogenated forms. Estrogens are also 

manufactured for use as pharmaceuticals (e.g., birth control and hormone replacement 

therapy) and to enhance livestock production. All of these natural and synthetic estrogens 

are released into the environment through myriad routes including sewage and livestock 

effluent (Shore and Shemesh 2003). And since estrogens are potent enough to severely 

affect natural populations and individual organisms in receiving waters and have been 

found in treated drinking water, it is crucial that we better characterize the range of 

estrogens being released into the environment.  

 

1.2  The history of endocrine disruption 

Endocrine disruption has been comprehensively reviewed in other publications 

(Tyler, Jobling et al. 1998; Sumpter and Johnson 2005; Williams, Keller et al. 2009; 

Snyder and Benotti 2010; Bergman, Heindel et al. 2013). An endocrine disrupting 

chemical (EDC) is defined as “an exogenous substance or mixture that alters function(s) 

of the endocrine system and consequently causes adverse health effects in an intact 

organism, or its progeny, or (sub) populations” (IPCS 2002). The brief summary that 

follows is focused on the history of EDCs in terms of their occurrence in wastewater and 

effects on wildlife.  

 As a class of steroidal hormone, estrogens were first discovered in the 1920s and 

1930s (Morgan and Moynihan 2000).  Non-steroidal chemicals with appropriate size and 

chemical character were known to mimic steroids as early as the 1940s (Schueler 1946), 

and by the 1950s, studies had made direct links between endocrine disruption and 

specific plant-derived and synthetic chemicals (Levin, Burns et al. 1951; Fisher, Keasling 
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et al. 1952). As public interest grew and analytical capabilities improved through the 

1960s and 1970s, increasing numbers of chemicals were identified in wastewaters, rivers, 

and lakes. Many of these chemicals were pharmaceuticals and steroidal hormones that 

were excreted by humans and survived wastewater treatment (e.g., Stumm-Zollinger and 

Fair 1965; Hignite and Azarnoff 1977). By the 1990s and 2000s, scientists were able to 

make direct connections between fish abnormalities and endocrine disrupting chemicals 

in water (Tyler, Jobling et al. 1998; Kidd, Blanchfield et al. 2007; Bergman, Heindel et 

al. 2013). These effects, which include the feminization of males and impaired 

reproductive fitness, have been observed at both the individual and population levels.  

 

1.3  A range of estrogen-like chemicals 

 Knowing the affinity between a chemical and an estrogen receptor is a first step in 

understanding a chemical’s estrogenic potency. Some compounds bind strongly (e.g., 

17α-ethynylestradiol), while others bind weakly (e.g., bisphenol A), and this difference is 

a direct reflection of chemical structure (Fang, Tong et al. 2001). Still, the net strength of 

a hormonal response, and thus a chemical’s overall potency, is mediated by many 

physiological and environmental variables (Bergman, Heindel et al. 2013).  

 Human estrogen receptors (ER) are expressed in living tissue to different degrees. 

Each receptor (e.g., ERα, ERβ) also exhibits a unique binding affinity for each individual 

estrogen or estrogen-mimic (Kuiper, Carlsson et al. 1997; Kuiper, Lemmen et al. 1998).  

In general, chemicals that bind well to estrogen receptors share some common 

features. The 3-dimensional shape and electronic structure of the ligand binding domain 

of an estrogen receptor determines which chemicals will bind strongly (Brzozowski, Pike 

et al. 1997). Key characteristics include molecular size, a hydrophobic central molecular 

core, and functional groups (like hydroxyl groups) that have H-bond donating ability at 

either end of the molecule (Schueler 1946; Anstead, Carlson et al. 1997; Fang, Tong et al. 

2001).  

 Since chemical structures are so diverse, binding affinity can vary by many orders 

of magnitude. Typically, the estrogen 17β-estradiol (E2) is treated as the reference for 
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estrogen receptor binding affinity (sometimes called “estrogenicity”), and binding by 

other chemicals is measured relative to E2 and expressed in terms of E2 equivalents 

(EEq; Table 1). The estrogen used in most oral contraceptive pills, EE2, is one chemical 

that binds more strongly than E2 (EEq ~ 1.3; (Liu, Kanjo et al. 2009)).  

Yet, the vast majority of natural and synthetic chemicals have some structural 

feature that precludes strong binding with the estrogen receptor. For example, estrone 

(E1; EEq ~ 0.3), is a potent “free” form but lacks an H-bond donor on the D-ring (Liu, 

Kanjo et al. 2009). Similarly, the sulfate conjugate, estrone-3-sulfate (E1-3S; EEq < 

0.01), lacks an H-bond donor on the D-ring but is also considerably larger and more polar 

than the free form, E1 (Kuiper, Carlsson et al. 1997). A common chemical additive, 

bisphenol A (BPA; EEq ~ 0.0001), has two H-bond donor groups but non-optimal shape 

(Fang, Tong et al. 2001). Finally, phytoestrogens (EEq ~ 0.0007), which are plant-

derived chemicals present at high concentrations in many food products (NCEH 2005; 

Stanford, Snyder et al. 2010), have a molecular core that is typically more polar than that 

of steroidal estrogens (Fang, Tong et al. 2001).  

Estrogenic effects are related to both environmental concentration (activity) and 

binding affinity. Indeed, chemicals like BPA, which are often present at high 

concentrations (µg L-1) in the environment may be a lesser risk than low level (ng L-1) 

constituents, like steroidal estrogens, that have 103 – 104 times stronger affinity for 

estrogen receptors. Still, chemicals do not exist in isolation. In the end we should work 

towards understanding the effect of realistic mixtures of chemicals on organisms as well 

as the relevant mechanisms of interaction with endocrine systems as a whole.  

 

1.4  Broad objectives 

The main objective of this thesis is to evaluate whether we should consider a 

wider range of steroidal estrogens in environments that receive estrogenic mixtures 

capable of harming organisms. Most research energy has been devoted to characterizing 

potent free estrogens.  We seek to understand the importance of other likely forms, 

particularly conjugated and halogenated estrogens. In systems where estrogens pose a 
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threat, effective solutions will require a better understanding of the sources and fate of 

estrogens. Thus, we also investigate whether carbon isotopes may provide a way to track 

synthetic and natural estrogens in complex environments.  

 

1.5  Estrogen reservoirs 

When we measure only free estrogens (e.g., E1, E2, estriol (E3), and EE2) in 

wastewater effluents, rivers, lakes, oceans, or groundwater, do we have the full picture? 

Or, have we neglected important reservoirs of estrogens by not looking for conjugated 

and halogenated forms?  

Thousands of studies have described free estrogens in wastewaters and natural 

waters. The reasons that few of these studies have also considered conjugated or 

halogenated estrogens are threefold. First, conjugates and halogenated forms are thought 

to be less important because they bind less strongly to estrogen receptors. Second, 

authentic standards of most halogenated estrogens are not commercially available. 

Finally, methods that target a wide range of chemical structures are challenging to 

optimize and validate.  

There is strong evidence that conjugates and halogenated forms are important. 

Conjugates have polar groups that are attached to the free estrogen skeleton at carbon 

number 3, 16, or 17 (Figure 1; Figure 2; (Axelson, Sahlberg et al. 1981)) to aid with 

excretion from the body. Most human and animal estrogens are excreted as sulfate or 

glucuronide conjugates (Figure 2). Typically, the conjugates are much less potent than 

free estrogens (Figure 3; (Burgess 2003)), and hence are generally “missed” by screening 

tests. There is also evidence that WWTPs may even be a net source of the sulfate 

conjugates E1-3S and E2-3S to the effluent stream implying these conjugates are being 

formed from free and glucuronide forms (Schlusener and Bester 2008). To date, there 

have been only a few studies of the fate of conjugates in sewers and WWTPs (Gomes, 

Scrimshaw et al. 2009 and references therein), and none that investigate the fate of 

estrogen conjugates in marine environments. 
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Chlorinated derivatives of estrogens (Figure 2) are also formed during wastewater 

disinfection processes (Nakamura, Kuruto-Niwa et al. 2007). They are more hydrophobic 

(e.g., log KOW of 2,4-dichloro-estradiol is estimated to be 5.23, more than an order of 

magnitude higher than estradiol and thus encouraging bioaccumulation) and more acidic 

than the corresponding native estrogens (e.g., the pKa of estradiol is 10.71, while its 2,4-

dichloro derivative is estimated to have a pKa of 7.43 (Table 1)). Despite the widespread 

use of chlorine to disinfect wastewater, only a small number of studies have considered 

the importance of chlorinated estrogens in wastewater effluents and the environment (Hu, 

Cheng et al. 2003; Moriyama, Matsufuji et al. 2004; Nakamura, Shiozawa et al. 2006; 

Nakamura, Kuruto-Niwa et al. 2007; Wu, Hu et al. 2009). In a Japanese WWTP, 

Nakamura et al. (2007) showed that chlorinated E1 derivatives were present in effluent at 

concentrations up to 50 % that of the free form (E1).  

Typically, estrogens exhibit unchanged or slightly decreased estrogenic activity 

upon chlorination (Mukawa, Suzuki et al. 1988; Moriyama, Matsufuji et al. 2004; 

Nakamura, Shiozawa et al. 2006). Yet the actual chemical activity of chlorinated 

derivatives may be even greater than reported since none of the studies corrected for the 

sorption of chlorinated estrogens onto vessel walls due to greater hydrophobic character 

(log KOW ~ 4 - 6; Table 1).  

The hydrophobicity of halogenated estrogens also means they are more likely to 

accumulate on particulate organic matter and in sediments. High particulate/sedimentary 

estrogen activity may disproportionately affect benthic organisms, filter feeders, and 

demersal fish. In addition, studies of halogenated phenols (e.g., Abrahamsson and Klick 

1991) suggest that dehalogenation by microorganisms in anoxic sediments could convert 

halogenated estrogens into potent free forms.  

Together, existing studies of conjugates and chlorinated derivatives suggest that 

we are missing a significant piece of the puzzle when it comes to the mass balances, 

cycling, and environmental impacts of estrogens in coastal ecosystems.  

Conjugates may be quickly converted into potent free forms by bacteria in sewers, 

treatment plants, and receiving waters, and chlorinated forms have been observed in some 
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wastewaters at concentrations on par with free forms. Moreover, it is likely that 

brominated forms would also form in wastewaters containing bromide and treated with 

chlorine. Yet, to date no method exists for simultaneously measuring free, conjugated, 

and halogenated estrogens.  

Chapter 2 will describes a method for simultaneously measuring 23 steroidal 

estrogens, including free forms (4), conjugated forms (7), and halogenated forms (12) in 

wastewater treatment plant effluent.  

The estrogen literature is dominated by descriptive studies, which characterize the 

concentrations of free estrogens in certain particular wastewater plants, rivers, or lakes. 

Fewer studies have sought to characterize the processes that control the fate of estrogens 

in environmental systems.  And, to our knowledge, none have addressed estrogen fate in 

a coastal ocean impacted by sewage.  

 

1.6  Estrogens in marine systems 

 There is a paucity of measurements of estrogens in marine systems (Figure SI-1; 

Appendix A). But despite literally thousands of published studies on estrogens and 

endocrine disruptors in the environment, we remain largely uninformed about the 

sources, concentrations, fates, and effects of estrogens in marine ecosystems (Scott, 

Katsiadaki et al. 2006; Scott, Sanders et al. 2007). This is an incredible situation since we 

know these compounds are routinely discharged to coastal seas, and even parts per 

trillion estrogen levels may substantially impact aquatic organisms and pose threats to 

human health through seafood consumption (Caldwell, Mastrocco et al. 2008; Johnson, 

Lomax et al. 2008). 

There are large gaps in our understanding of the effects of sewage-derived 

estrogens on marine organisms, including fishes and mammals.  

Some scientists suggest that potent endocrine disruptors such as estrogens are 

deleterious to vertebrates at any non-zero level, even when those levels fall below our 

detection limits. This assertion seems extreme, especially in light of the fact that marine 
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vertebrates must excrete estrogens into their surroundings and often aggregate into 

schools and shoals.  

Nonetheless, we increase the risk of damaging our aquatic and marine ecosystems 

and the ecosystem services they provide when we proceed without first characterizing 

total estrogen concentration and understanding how estrogen conjugates behave 

differently with respect to transport and toxicology. The speciation of estrogens between 

“free” and conjugated forms also has important implications for their bioaccumulation 

potential and, thus, the risk to human health via consumption of fish and bivalves. In 

addition, we must improve our knowledge of coastal estrogen cycling so that we might 

protect the quality of our drinking water more effectively and efficiently. 

Steroidal estrogens are ubiquitous signaling chemicals, so we would expect 

natural background levels to exist in seawater. Yet there are almost no measurements of 

these levels. A single water sample from the North Pacific contained E1 concentrations of 

0.052 ng L-1 based on a highly specific immunoassay method (Atkinson, Atkinson et al. 

2003). While limited in scope, this value provides a benchmark from which to evaluate 

estrogen concentrations in coastal ocean environments impacted by sewage. If observed 

estrogen levels exceed background values, then this would point to additional sources and 

the potential for ecosystem harm. 

After reviewing substantial literature, Caldwell et al. (2008) consider fish 

reproduction as the most relevant and measurable endpoint and they come to a predicted 

no-effect concentration (PNEC) for 17α-ethynylestradiol (EE2) of 0.35 ng L-1. Likewise, 

Gross-Sorokin et al. (2006) concluded PNEC levels of 0.1 ng L-1 for EE2, 1 ng L-1 for 

E2, and 3 ng L-1 for E1. Moreover, Kidd et al. (2007) found that chronic exposures to 

only 5 - 6 ng L-1 EE2 caused the collapse of a minnow population in their experimental 

lake system, implying lower concentrations are needed to avoid chronic effects. Hence, 

many studies identify ng L-1 concentrations as critical levels in various aquatic 

organisms, including fish, amphibians, gastropods, and amphipods (Caldwell, Mastrocco 

et al. 2008); and these studies still do not consider the implications of juvenile exposure 

or the possibility that the estrogens act synergistically.  
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Additionally, these water-based exposures do not consider diet-based doses. 

Dussault et al. (2009) recently reported EE2 bioaccumulation in animals such as midges 

(Chironomus tentans) and amphipods (Hyallela azteca), the types of animals that may 

serve as prey for fish. Redhorse suckers (Moxostoma macrolepidotum) living near a 

wastewater outfall were also found to bioaccumulate EE2 (Al-Ansari, Saleem et al. 

2010). Further, Al-Ansari et al. inferred that these higher-trophic-level fish exhibited bio- 

enrichment of this estrogen, implying a food chain exposure route. Perhaps most 

disturbing is the fact that lipid-normalized EE2 concentrations among this redhorse 

sucker population were several times higher than what we expect for women taking oral 

contraceptives. Hence, it is not obvious that evaluation of seawater concentrations of 

estrogens (i.e., ~ ng L-1 levels) will be sufficient to know whether discharges may be 

damaging coastal ecosystems and will be leading to significant human exposures. 

Moreover, as the Boston wastewater is chlorinated, the production of chlorinated 

(and perhaps brominated, since bromine-containing haloforms have been found in Deer 

Island effluents; Figure 4) estrogens during treatment with hypochlorite at Deer Island is 

almost certain (Hu, Cheng et al. 2003; Moriyama, Matsufuji et al. 2004; Nakamura, 

Shiozawa et al. 2006; Nakamura, Kuruto-Niwa et al. 2007; Wu, Hu et al. 2009). This is 

important because the bioaccumulation potentials (based on larger KOW values; Table 1) 

of chlorinated (and brominated) estrogens are even higher than those of the parent 

estrogens (Figure 3). And the literature indicates that the chlorinated compounds exhibit 

similar or only slightly lower estrogenic activity than free estrogens (Figure 3; 

(Moriyama, Matsufuji et al. 2004; Nakamura, Shiozawa et al. 2006)).  

Due to all these considerations (e.g., possible synergistic effects, levels of chronic 

exposures, food web enrichments, contributions of chlorinated derivatives), estrogen 

loading to coastal areas such as Massachusetts Bay (Figure 4) may be significant with 

respect to biological effects even at sub-ng L-1 concentrations. If the risks associated with 

certain estrogens are deemed to be unacceptable for human or ecosystem health, then the 

fate model we develop will also be useful for designing and assessing mitigation 

strategies including source controls, treatment options, and re-design of synthetic 
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estrogen structures. And if (chlorinated) estrogens are accumulating in marine food webs, 

entering our seafood supply, and compromising human health, then we would be wise to 

begin to understand the sources and fate of these compounds in the marine environment. 

Hence, the chief goal of this work is to develop a mass balance understanding of the free, 

conjugated, and halogenated estrogens, considering the specific environmental processes 

that control their concentrations in a coastal ocean ecosystem. 

 

1.7  Preliminary assessment of estrone (E1) in Massachusetts Bay 

In order to begin to assess estrogen levels and the likelihood of adverse effects in 

a representative coastal ecosystem, a preliminary mass balance was formulated for E1 in 

a steady state, well-mixed Massachusetts Bay (Figure 5; Appendix SI-1; Table SI-1). To 

estimate the steady state concentrations, we considered sewage inputs and removals via 

flushing, sorption and settling, loss to the atmosphere, photodegradation, and 

biotransformation. This model focuses on the “water column compartment” of 

Massachusetts Bay (see Shea 1995), and is tuned by the estimated effluent composition 

and chemical properties of E1. Our initial calculations assume that Deer Island effluent is 

the only source of E1, thereby ignoring inputs from other municipalities, combined sewer 

overflows (CSOs), and natural estrogens in the feces and urine of marine vertebrate 

populations. Calculations suggest that removals by sedimentation and air-sea gas 

exchange are negligible compared to flushing with water from the Gulf of Maine and 

biodegradation. We note that biodegradation rate constants have only been determined 

for microcosms allowed to acclimatize to µg L-1 estrogen spiking levels, which are orders 

of magnitude higher than typical environmental concentrations (Jurgens, Holthaus et al. 

2002; Ying and Kookana 2003; Ying and Kookana 2005; Ying, Toze et al. 2008). Thus 

the biodegradation rate constant we use (10 y-1; (Ying and Kookana 2003)) may be a 

gross overestimate since initial estrogen concentrations were orders of magnitude higher 

than those expected in Massachusetts Bay, conjugated and chlorinated forms were not 

considered, and rates were determined after long lag periods (~ 2 - 4 weeks). Due to 

relatively small KOW values (Table 1), it is unlikely that sorption to particles and 
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subsequent loss to bed sediments is a major sink of estrogens. This will be particularly 

true for the more polar conjugates, but less so for chlorinated derivatives which are more 

hydrophobic. We can also safely neglect air - water exchange for these estrogen species 

due to very small Henry’s constant values (Table 1). The resulting mass balance takes the 

form, 

 
 

where kflush, ksettle, and kdegrade are rate constants that correspond to flushing, 

sedimentation, and degradation, respectively, and fsolid and fwater represent the fraction of 

the compound on sinking particles and dissolved in the water. In this case kdegrade likely 

reflects a combination of processes including biodegradation (kbio) and photodegradation 

(kphotodeg). We can solve the mass balance equation for each form of E1 at steady-state 

conditions, and then combine the results to calculate “[E1]tot” in Massachusetts Bay (0.16 

ng L-1). This estimate includes free (E1; 19 %), conjugated (E1-3S; 72 %), and 

chlorinated (monochloro-E1; 9 %) derivatives. Yet this simple model assumes that E1-3S 

and monochloro-E1 are the only E1 derivatives, and that both biodegrade with the same 

rate as the free form (kbio = 10 y-1). These estimates also ignore the likelihood that some 

portion of E1-3S in Massachusetts Bay will be converted to the potent free form by 

sewage-derived bacterial communities (Gomes, Scrimshaw et al. 2009). As a result, we 

expect that concentrations near the outfall (before far-field mixing) will be ~ 10x higher, 

likely of the order 1 - 10 ng L-1.  

Chapter 3 will test model accuracy by quantifying the full suite of natural and 

synthetic estrogens and their conjugated and halogenated derivatives in the receiving 

waters and sediments of Massachusetts Bay, USA. To the best of our knowledge, this 

will be the first time that free, conjugated, and chlorinated estrogens have been measured 

simultaneously in coastal seawater. These measurements will serve as a test of predicted 
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estrogen distributions in Massachusetts Bay and provide context for evaluating risks to 

human and ecosystem health by highlighting the relative importance of sewage-derived 

and natural estrogen sources.  

 

1.8  Distinguishing between natural and synthetic estrogens in the environment 

Finally, in those systems where estrogen levels are deemed problematic, it will be 

desirable to know the relative contributions from synthetic versus endogenous estrogens 

in order to design cost-effective solutions.  

Mitigation strategies could include source control and/or enhanced removal 

during treatment. For example, if synthetic pharmaceuticals were the problem source, 

then one could encourage pharmaceutical design for improved environmental 

degradability or promote efforts to improve unused pharmaceutical disposal programs. If 

endogenous estrogens were the problem source, then it may be preferable to invest in 

wastewater treatment technologies or improve sewer infrastructure to reduce leaks and 

CSOs.  

A key factor for successful application of this approach will be the ability to 

accurately distinguish between synthetic and endogenous estrogens in very complex 

environmental matrices (e.g., wastewater, seawater, soils, sediments). In some cases this 

is possible by conventional analytical chemical means since pharmaceuticals often have 

unique structures. For example, the estrogen used in most oral contraceptive pills, EE2, is 

unique in that it contains an ethynyl group at carbon position 17. In other cases, synthetic 

estrogens are indistinguishable from endogenous forms based solely on chemical 

structure (e.g., E2 used in hormone replacement therapies).  

 However, slight variations in isotopic composition have been shown to help 

discriminate between otherwise structurally identical compounds. In fact, the relative 

abundance of stable carbon isotopes (12C, 13C) is used routinely to identify synthetic 

steroid doping in athletics and livestock applications.  
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Chapter 4 will present evidence that synthetic hormones have distinct carbon 

isotope (12C, 13C, 14C) signatures, which could be used to apportion sources of synthetic 

and endogenous estrogens and progestogens to wastewater and natural waters. 
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Table SI-1. Mass balance parameters for E1 in Massachusetts Bay 
 
Symbol Definition Value Source 
Cw Steady State concentration dissolved 

in MA Bay 
2 pg L-1 Eqn (2) 

Qin Input from Deer Island WWTP 
effluent 

4.9 x 1012 ng y-1 Assuming an average flow of 360 
MGD and 93% receives secondary 
treatment (Delaney and Rex 2007); 
[E1]influent ~ 58 ng L-1; [E1]effluent ~ 
6.3 ng L-1 (Chimchirian, Suri et al. 
2007) 

Vbay Volume of MA Bay 1.28 x 1011 m3 Abay and Davg 
Abay Surface area of MA Bay 3.2 x 109 m2 (Gustafsson, Long et al. 2001) 
Davg Average depth of MA Bay 35 m (Jiang and Zhou 2008) 
kflush Rate constant for advection (flushing) 12 y-1 (Gustafsson, Long et al. 2001) 
kdeg Biodegradation rate constant  10 y-1 Estimate based on a reported aerobic 

biodegradation rate for E2 in marine 
sediment (Ying and Kookana 2003) 

s Sedimentation rate 0.31 cm y-1 (Gustafsson and Gschwend 1998) 
Φ Porosity of surface sediments 0.73 (Gustafsson and Gschwend 1998) 
ρs Solid sediment density 2.5 g cm-3 (Shea 1995) 
[TSS] Total suspended solid concentration 1 mg L-1 (Hyde, O'Reilly et al. 2007) 
Ctot Total concentration including both 

dissolved and particulate phases 
N/A Ctot = Cw + Cs 

Cs Steady state concentration on solids N/A Cs = fsCtot 
fs Fraction of E1 in the particulate 

(solid) phase 
5 x 10-6 fs = CsMs/(CsMs + CwVw) 

   = (Kd[TSS])/(1+ Kd[TSS]) 
fw Fraction of E1 in the dissolved phase 0.999995 fw = CwVw/(CsMs + CwVw) 

    = (1/(1+ Kd[TSS]) 
Kd Solid-water distribution coefficient ~ 5 L kg-1 Estimate based on upper Mississippi 

River sediment (Lee, Strock et al. 
2003) 
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Figure 1. Steroid carbon numbering and ring labels (Morgan and Moynihan 2000). 
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Figure 2. Estrogen structures 
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Figure 3. Estrogen families exhibit different binding affinities (y-axis) and potential to 
sorb onto sediments and bioaccumulate (x-axis) (Griffith 2011).  
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Figure 4. Study sites: Deer Island Treatment Plant and Massachusetts Bay.  
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Figure 5. Preliminary mass balance model of a single estrogen family (E1) in 
Massachusetts Bay.  The model assumes a single well-mixed box at steady state.  The 
only input of E1 is Deer Island WWTP effluent (mixed uniformly throughout the bay) 
where the lower bound is the measured effluent concentration of free E1 (MWRA, 
unpublished) and the upper bound includes estimates of conjugated and chlorinated E1 
inputs (Baronti, Curini et al. 2000; Nakamura, Kuruto-Niwa et al. 2007).  Removal 
occurs by advection (into the Gulf of Maine), biodegradation, and sedimentation. 
Calculations suggest that removal by sedimentation and to the atmosphere will be 
negligible.  Due to the nature of mixing we expect that actual concentrations near the 
outfall will be ~ 10x higher.  
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Figure SI-1. Summary of coastal ocean estrone (E1) concentrations. Single 
measurements are shown as circles. When multiple measurements were reported, the full 
range is shown as a bar. Concentrations from the current study (Massachusetts Bay and 
Boston Harbor) are shown in orange. See Appendix A for references and additional 
details. 
 

  

10 100 1000 10000 

E1 (pg Lsw-1) 

Kaneohe Bay, HI 
N. Paci

Biosphere 2 ocean 
Fr. Polynesia 

S. Molokai 
Maui (n=70) 

Oahu 
Florida Keys 

Tinian Is. 
Tern Is. 

Guam (resorts) 
Moorea (resort) 

Key Largo Shore 
Maalaea Bay 
Big Pine Key 

Key West 
Rehoboth Bay 

Key West Harbor 
Jamaica Bay, NY 

Tokyo Bay 
LA outfall site 

Halifax Harbor 
St. Johns Harbor 

Sydney outfall 
Baltic Sea 

Cape Cod ponds 
Acushnet estuary 

Biobio, Chile 
Xiamen Bay, China 

Mass Bay - PLM (Oct 2012) 
Mass Bay - PLM (May 2013) 

Mass Bay - DS1 
Mass Bay - DS2 

Mass Bay - US 
Boston Harbor - BH 



 45 

Appendix SI-1. Estrone (E1) mass balance model for Massachusetts Bay 
 

The following expression was used to estimate the steady state concentration of 

dissolved estrone (E1) in Massachusetts Bay assuming a single well-mixed box at steady 

state. The only input of E1 is Deer Island WWTP effluent, and removal occurs by 

advection (flushing into the Gulf of Maine), biodegradation, and sedimentation. 

Calculations suggest that removal by sedimentation will be negligible.  

 

€ 

dCw

dt
=
Qin

Vbay

− k flushCtot −
s(1−Φ)ρsAbay

[TSS]Vbay

Cs − kdegCtot     

 

Ctot is the total E1 concentration in MA bay, and Cw and Cs are those portions of E1 in the 

dissolved and particulate phases respectively. After Ctot and Cs are expressed in terms of 

Cw (see Table SI-1) and steady state is assumed, the solution for Cw yields: 

 

€ 

Cw =

Qin
Vbay

1
fw
(k flush + s(1−Φ)ρs f s(1 [TSS]Davg ) + kdeg)
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Abstract  

Steroidal estrogens are potent endocrine-disrupting chemicals that enter natural 

waters through the discharge of treated and raw sewage. Because estrogens are 

detrimental to aquatic organisms at sub-ng L-1 concentrations, many studies have 

measured so-called “free” estrogen concentrations in wastewater effluents, rivers, and 

lakes. Other forms of estrogens are also of potential concern since conjugated estrogens 

can be easily converted to potent free estrogens by bacteria in wastewater treatment 

plants and receiving waters, and halogenated estrogens are likely produced during 

wastewater disinfection. Yet, to our knowledge, no studies have characterized free, 

conjugated, and halogenated estrogens concurrently. We have developed a method that is 

capable of simultaneously quantifying free, conjugated, and halogenated estrogens in 

treated wastewater effluent. Detection limits (from 200 mL samples) were 0.13 – 1.3 ng 

L-1 (free), 0.11 – 1.0 ng L-1 (conjugated), and 0.18 – 18 ng L-1 (halogenated). An aqueous 

phase additive, ammonium fluoride, was used to increase electrospray (negative mode) 

ionization efficiency of free and halogenated estrogens by a factor of 20 and 2.6, 

respectively. The method was validated using treated effluent from the greater Boston 

metropolitan area, where we consistently found concentrations of 2-bromo-17β-estradiol 

and 2,4-dichloro-17β-estradiol on par with or greater than free estrogen concentrations.  
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2.1  Introduction 

Steroidal estrogens are potent endocrine-disrupting chemicals (EDCs), designed 

to be biologically active and known to disrupt the normal growth and development of 

aquatic organisms at sub-ng L-1 concentrations (Caldwell, Mastrocco et al. 2008; 

Johnson, Lomax et al. 2008; Velicu and Suri 2009). Estrogens have been measured in 

rivers, lakes, estuaries, oceans, sewage effluents, septic system discharges, groundwater, 

and drinking water, with concentrations ranging up to µg L-1 levels (Desbrow, Routledge 

et al. 1998; Snyder, Villeneuve et al. 2001; Soto, Calabro et al. 2004).  

There are a variety of ways that estrogens can enter aquatic environments. 

Terrestrial and aquatic vertebrates produce and excrete estrogens naturally (Kolodziej, 

Harter et al. 2004; Rolland, Hunt et al. 2005).  Moreover, certain vertebrates such as 

cattle may also receive synthetic estrogen supplements to boost milk production or 

growth, and their associated waste products often run into rivers and lakes (Hanselman, 

Graetz et al. 2003; Chimchirian, Suri et al. 2007; Kang and Price 2009). If sludge and 

manure are applied to agricultural fields, then estrogens may enter surface and 

groundwater by runoff and infiltration (Khanal, Xie et al. 2006). Numerous studies have 

measured estrogen concentrations in natural waters, but very few have characterized 

relative contributions from natural (cattle, fish, etc.) and sewage sources.  

Estrogens are susceptible to removal by biodegradation or sorption to sewage 

sludge in wastewater treatment plants (WWTPs), where secondary treatment can reduce 

estrogen concentrations by ~85 % (Johnson and Sumpter 2001) and final effluents 

typically contain ng L-1 concentrations of individual estrogens. Despite the many 

published studies on estrogens in WWTPs and the environment, we lack a comprehensive 

understanding of the diversity and distribution of steroidal estrogens in WWTP effluents.  

Estrogens belong to a class of steroid hormone that includes a variety of chemical 

forms and exhibits a range of properties related to phase partitioning, reactivity, and 

potency. Free estrogens are the most potent form due to characteristic structures that 

permit strong binding with estrogen receptors in the body. Free estrogens include 

naturally occurring compounds such as estrone (E1), 17β-estradiol (E2), and estriol (E3), 
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and synthetically derived 17α-ethynylestradiol (EE2). Estrogens are excreted by 

vertebrates largely in forms that have added glucuronide and sulfate groups. These so-

called conjugated estrogens are larger and more polar than free estrogens, and 

consequently they have very low binding affinity for estrogen receptors rendering them 

biologically inactive (Anstead, Carlson et al. 1997; Fang, Tong et al. 2001). However, 

conjugates can be converted to the potent free form by sewage-derived bacterial 

communities (Gomes, Scrimshaw et al. 2009). 

Another estrogen form, chlorinated estrogens, are produced during wastewater 

disinfection processes (Nakamura, Kuruto-Niwa et al. 2007) as hypochlorite reacts with 

free estrogens. Despite the widespread use of chlorine to disinfect wastewater, we know 

very little about the concentration and behavior of chlorinated estrogens in wastewater 

effluent. Chlorinated estrogens are more hydrophobic than their corresponding free 

estrogens, indicative of a greater tendency for chlorinated estrogens to bioaccumulate. 

For example, the log KOW of diClE2 (5.23; (USEPA 2013)) is more than an order of 

magnitude higher than E2 (4.01; (Hansch, Hoekman et al. 1995)), . The fact that 

chlorinated estrogens are more acidic than free estrogens (e.g., pKa of diClE2 and E2 are 

7.43 and 10.71, respectively (Lewis and Archer 1979; Hilal, Karickhoff et al. 2003)) also 

has implications for sorption and photochemical degradation processes.  

Despite the large potential flux of chlorinated estrogens from wastewater 

treatment plants into receiving waters, only a few studies have considered the importance 

of chlorinated estrogens in wastewater effluents and the environment (Hu, Cheng et al. 

2003; Moriyama, Matsufuji et al. 2004; Nakamura, Shiozawa et al. 2006; Nakamura, 

Kuruto-Niwa et al. 2007; Wu, Hu et al. 2009). In a Japanese WWTP employing 

secondary treatment and disinfection by hypochlorite, Nakamura et al. (2007) found 

chlorinated estrogens in effluent at concentrations (4 – 15 ng L-1) up to 50% of the free 

form. The study focused exclusively on E1 and its chlorinated derivatives (monoClE1 

and diClE1), relying on detection by selected ion monitoring (SIM) and quantification by 

an external calibration approach. Therefore, it is possible that other chlorinated estrogens 
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were present and that wastewater matrix effects could have biased chlorinated E1 

concentrations to lower values.  

Estrogens are reported to exhibit unchanged or decreased estrogenic activity upon 

chlorination (Mukawa, Suzuki et al. 1988; Hu, Cheng et al. 2003; Moriyama, Matsufuji et 

al. 2004; Nakamura, Shiozawa et al. 2006; Lee, Escher et al. 2008; Liu, Kanjo et al. 

2009). Yet the actual estrogenic activity of chlorinated derivatives may be even greater 

than reported since none of these studies corrected for the sorption of chlorinated 

estrogens onto vessel walls due to its greater hydrophobic character (log KOW ~ 4 - 6; 

(USEPA 2013)).  

Estrogens can also react with hypobromite to form brominated derivatives. 

Hypobromite is rapidly formed in WWTPs and seawater when hypochlorite reacts with 

bromide ion (Wong and Davidson 1977; Lee and Von Gunten 2009). This reaction has a 

reported second-order rate constant of 1.55 x 103 M-1 s-1 (Kumar and Margerum 1987). 

Thus, when seawater (carrying ~ 1 mM bromide) leaks into coastal cities’ sewers, 

hypobromite may react quickly with estrogens to form brominated estrogens. Small 

amounts of hypobromite may also be formed during drinking water treatment since 

bromide is a minor constituent of source waters (~ 10 µM; (Vengosh and Pankratov 

1998, and references therein)). Moreover, both chlorinated and brominated phenols are 

known to form in bromide-containing waters treated with hypochlorite (Rook 1974; Rook 

1976; Petrovic, Diaz et al. 2001; Acero, Piriou et al. 2005).  

If halogenated estrogens represent an important component of the estrogen flux 

into the environment, then we may need to evaluate the fate and mass balance of 

estrogens in WWTPs and receiving waters. Moreover, if synergistic effects, chronic 

exposures, and food web enrichments are significant, then even sub-ng L-1 halogenated 

estrogen concentrations could have significant biological effects. Therefore our efforts to 

characterize estrogen sources and fates should include halogenated forms in addition to 

conjugates and free forms.  

This study describes a method for measuring a wide range of steroidal estrogens 

(free, conjugated, brominated, and chlorinated) in wastewater effluent. The goal was to 
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design a relatively simple extraction protocol and an instrumental method that targets a 

wide range of estrogens in a single analytical run. The method was validated for effluent 

from a typical large WWTP that employs activated sludge secondary treatment and 

chlorine-based disinfection by analyzing this effluent after known standard additions 

were made. Time-series samples were collected in order to accurately characterize the 

estrogen flux delivered from this WWTP into Massachusetts Bay, U.S.A.  

 

2.2  Experimental 

2.2.1  Study site 

The Deer Island Treatment Plant (DITP) is a large secondary treatment facility 

that handles the greater Boston metropolitan area’s sewage and roadway runoff.  Briefly, 

treatment at DITP involves primary settling tanks, secondary treatment by biologically 

activated sludge, disinfection by chlorination, followed by dechlorination using sodium 

bisulfite.  The Deer Island sewage outfall delivers, on average, 360 million gallons per 

day (MGD; 15.8 m3 s-1) of treated effluent to Massachusetts Bay (15 km offshore; 30 m 

water depth) via a 2 km long diffuser, which dilutes effluent by ~ 100-fold (Delaney and 

Rex 2007; Hunt, Mansfield et al. 2010).  

 Wastewater (pH ~ 6.6) grab samples (“GRAB”) were collected from DITP at the 

final effluent sampling spigot on the mornings of 14 March (10 AM, dry weather, “DI-

1203”), 30 March (9:30 AM, dry weather, “DI-1203b”), and 16 May 2012 (10 AM, wet 

weather, “DI-1205”), and during the afternoon of 31 May 2012 (3 PM, dry weather, “DI-

1205b”). Since direct access to the ocean outfall is not possible, final effluent samples 

collected at DITP are chlorinated and dechlorinated on site in a 450’ long sampling loop 

system designed to simulate contact times in the disinfection basin and outfall tunnel.  

Flow-weighted composite final effluent samples (“COMP”) were also collected 

for 24-hour periods ending at 7 AM on 30 March (DI-1203b), 16 May (DI-1205), and 31 

May (DI-1205b), 2012. Each composite sample was stored in the dark at 4 ºC during 

collection. The composite sample from 16 May (DI-1205) captured a large rain event 

(max flow 731 MGD or 32.0 m3 s-1) overnight. Thus the DI-1205 samples (GRAB and 
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COMP) had significantly lower chloride, chemical oxygen demand (COD), and total 

suspended solids (TSS) than other samples. A summary of the characteristics of DITP 

effluent for each sample, including flow, chloride ion concentration, pH, and a variety of 

other chemical parameters was provided by the Massachusetts Water Resources 

Authority and can be found in Table SI-1.  

 

2.2.2  Materials and chemicals 

Estrogen standards were acquired from the following sources: Sigma-Aldrich 

(Saint Louis, MO, USA): estrone (E1), 99 %; 17β-estradiol (E2), ≥ 98 %; estriol (E3), 98 

%; 17α-ethynylestradiol (EE2), 99 %; estrone-3-sulfate (E1-3S), 99.5 %; 17β-estradiol-

3-sulfate (E2-3S), 99.5 %; estriol-3-β-D-glucuronide (E3-3G), 99 %; 17β-estradiol-3-β-

D-glucuronide (E2-3G), 99 %. Steraloids (Newport, RI, USA): estrone-3-glucuronide 

(E1-3G); 17α-ethynylestradiol-3-glucuronide (EE2-3G); 17α-ethynylestradiol-3-sulfate 

(EE2-3S); 2-bromo-17β-estradiol (monoBrE2); 2,4-dibromo-17β-estradiol (diBrE2); 2-

bromo-17α-ethynylestradiol (monoBrEE2); 2,4-dibromo-17α-ethynylestradiol 

(diBrEE2). The purity of these estrogens was confirmed by melting point and thin layer 

chromatography at Steraloids. Cambridge Isotope Laboratories (Andover, MA, USA): 

2,4,16,16-d4-estrone (E1-d4), ≥ 98 %; 2,4,16,16-d4-estrone-3-sulfate (E1-3S-d4), ≥ 98 

%. Dr. Hiroshi Matsufuji (Nihon University, Kanagawa, Japan): 4-chloro-estrone 

(monoClE1); 2,4-dichloro-estrone (diClE1); 4-chloro-17β-estradiol (monoClE2); 2,4-

dichloro-17β-estradiol (diClE2); 4-chloro-estriol (monoClE3); 2,4-dichloro-estriol 

(diClE3); 4-chloro-17α-ethynylestradiol (monoClEE2); 2,4-dichloro-17α-

ethynylestradiol (diClEE2). These chlorinated estrogen standards were synthesized and 

purified according to the procedures in Moriyama et al. (2004), and the identity and 

purity of chlorinated estrogens was confirmed by 13C NMR in 2004 and by liquid 

chromatography mass spectrometry (LC-MS; full scan m/z 170 – 1000) in 2011. All 

estrogen standards and stock solutions were stored at -20 ºC.  

The solvents used to condition solid phase extraction (SPE) disks and elute 

estrogens were isopropyl alcohol (Mallinckrodt AR), acetone (JTBaker Ultra Resi-
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Analyzed), and methanol (MeOH; JTBaker Ultra Resi-Analyzed). High purity, deionized, 

low-carbon laboratory water (Aquafine Corp.; pH 6.1) was used throughout this study. 

Artificial seawater (pH 7.9) was made according to a standard recipe (Eaton, Franson et 

al. 2005).  

 

2.2.3  Extraction method 

 Wastewater effluent samples of 200 mL were collected in pre-baked (450 ºC; 5 h) 

amber round glass bottles with Teflon-lined caps (Figure 1). Surrogate internal standards 

(SIS; 0.75 ng µL-1; E1-d4 and E1-3S-d4) were added in 2.4 µL of MeOH immediately to 

samples using a calibrated Eppendorf pipet, and bottles were capped and swirled to mix. 

Samples remained on ice until solid phase extraction in the laboratory (~ 2 – 3 hours 

later). Samples used for the matrix-matched calibration curves were spiked with 2.7 µL 

of a MeOH solution containing a mixture of 23 estrogens, prepared at 9 concentration 

levels, from 0.0037 ng µL-1 (STD1) to 37 ng µL-1 (STD9).  

Solid phase extraction disks (Empore SDB-XC (cross-linked styrene 

divinylbenzene on Teflon support); 47mm; 3M, St. Paul, MN) were placed in one of five 

glass filtration units on a 5-port vacuum manifold and conditioned with 10 mL acetone, 

10 mL isopropyl alcohol, and 10 mL MeOH, followed by 50 mL water. SPE disks were 

wet-loaded with sample, and sample bottles were rinsed with 2 x 5 mL clean water, 

which was then transferred to the filtration reservoir. After loading (200 mL samples), the 

SPE disks were dried for 20 min by continuing to pull a vacuum, and then disks were 

eluted with MeOH (2 x 10 mL) into amber glass vials. The extract was blown down to ~ 

1 mL under N2 in a 40 ºC water bath, reduced to dryness by vacuum centrifugation, and 

reconstituted in 30 µL MeOH.  This solution was mixed by vortexing before addition of 

water (70 µL), transfer to a pre-baked (450 ºC; 5 h) vial with insert, and storage at -20 ºC 

until analysis.  

 Extraction efficiency and SPE disk break-through experiments were conducted 

with water containing representative estrogens (E2-3S, E2, monoBrE2) spiked at 

concentrations of 1 – 40 µg L-1. Measurements were made by liquid chromatography 
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coupled to UV-visible diode array detection (LC/DAD). Estrogens were separated on a 

Thermo® Hypersil GOLD aQ™ column (250 x 4.6 mm i.d., 5 µm particle size) by 

isocratic elution using 70 % MeOH in water. The LC/DAD instrument (Hewlett Packard 

1050 series; Palo Alto, CA, USA) monitored three wavelengths corresponding to the 

secondary absorbance maximum of each estrogen (E2-3S: 270 nm, E2: 280 nm, and 

monoBrE2: 285 nm) and collected full UV-visible (190 – 350 nm) spectra at the base and 

apex of each peak.  

 

2.2.4  UHPLC-MS/MS analytical method 

 Standards, quality control (QC) samples, and unknown extracts were analyzed 

using an ultra high performance liquid chromatograph (UHPLC; Thermo® PAL 

autosampler and Accela pump) coupled via electrospray ionization (negative ion mode) 

to a triple-quadrupole mass spectrometer (MS/MS; Thermo® TSQ Vantage™) at the 

Woods Hole Oceanographic Institution FT-MS Facility. Selected reaction monitoring 

(SRM) conditions (s-lens, collision energy) were optimized individually for each 

estrogen (Table SI-2). Quantitation and confirmation SRM transitions (50 total; Table SI-

2) were chosen to maximize analyte signals and minimize matrix interferences. Mass 

calibration was performed using polytyrosine-1,3,6 (CS Bio, Menlo Park, CA, USA) 

infused directly into the mass spectrometer.  

Separation of estrogens was achieved on a Thermo® Hypersil GOLD aQ™ 

column (100 x 2.1 mm i.d., 1.9 µm particle size) with an Ultrashield UHPLC pre-column 

filter. The flow path length was minimized and made of stainless steel tubing where 

possible. The column and pre-column filter were insulated (30 °C) within a Hot Pocket 

column heater (Thermo Scientific; Waltham, MA, USA). The mobile phase consisted of 

(A) water (amended with 1 mM ammonium fluoride) and (B) methanol; the pH of the 

starting mobile phase (30 % MeOH) was 6.5.  We used a linear 7 % min-1 gradient over 

10 min (30 % – 100 % MeOH) with a short 0.7 min hold at 30 % MeOH, a 3.3 min hold 

at 100 % MeOH, and a 6.5 min equilibration (30 % MeOH) period before the next 

injection. LC flow rates were 375 µL min-1 during the gradient and 450 µL min-1 during 
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the MeOH wash and equilibration periods. The auto-injector utilized a low-carry-over 

dynamic load and wash method with separate organic (50:50 acetonitrile/MeOH) and 

aqueous (95:5 water/acetonitrile) wash steps. Injection volumes were 10 µL. The 

analytical method readily separated and detected all the target estrogens for the DITP 

wastewater effluent extract spiked at ~100 ng mL-1 (Figure SI-1).  

Estrogen concentrations were determined by the method of standard addition 

(Boyd, Basic et al. 2008) for those samples collected on 14 March (“DI-1203”). Matrix-

matched calibration curves (0.1 – 1000 ng mL-1, R2 > 0.997) were normalized with 

surrogate internal standards and used to determine estrogen concentrations in wastewater 

effluent collected on all other sampling days.  

 

2.2.5  Confirming analyte identity 

The identity of each analyte peak was confirmed by assuring that the peak met the 

following criteria compared to an appropriate authentic standard: 1) quantitation and 

confirmation SRM peak ratio within 20 % (Li, Campbell et al. 1996) or 50 % for low-

abundance samples (Commission 2002); 2) retention time within 2 % (Li, Campbell et al. 

1996).   

 

2.2.6  Correcting for sample processing losses and matrix effects 

In addition to matrix effects and extraction losses, it is possible that glucuronide 

conjugates could be degraded by β-glucuronidase between wastewater collection and 

extraction (Ternes, Kreckel et al. 1999; D'Ascenzo, Di Corcia et al. 2003; Reddy, Iden et 

al. 2005). Similarly, other estrogens would be vulnerable to transformations prior to 

extraction. Thus, it was desirable to spike all samples with the deuterated surrogate 

internal standards as soon as possible to correct for the combined effects of sample 

transport, extraction, ionization suppression/enhancement, and instrumental variability. 

Matrix effect and percent recovery data were not used to correct effluent concentrations.  

Rather, matrix-matched calibration curves were used (Kang, Hick et al. 2007; Boyd, 
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Basic et al. 2008), and instrumental response was normalized to the appropriate SIS (E1-

3S-d4 for all conjugates; E1-d4 for all free and halogenated forms).   

 

2.3  Results and Discussion 

2.3.1  Mobile phase composition and column temperature 

 In designing a method able to detect sub-ng L-1 concentrations of a wide range of 

estrogens in wastewater, it is essential to maximize analytical signals by optimizing 

mobile phase conditions and instrumental settings. In particular, we sought a way to 

increase signal intensity of free and halogenated estrogens (pKa ~ 7 – 11; (Hilal, 

Karickhoff et al. 2003)), which have lower ionization efficiencies than conjugated 

estrogens. Recent work has shown that fluoride ions promote gas-phase deprotonation of 

neutral steroids (Rannulu and Cole 2012), and ammonium fluoride (NH4F) can be used as 

a mobile phase additive to enhance signal intensity for a variety of metabolites (Yanes, 

Tautenhahn et al. 2011). In our own tests, we found that the addition of ammonium 

fluoride (1 mM per Yanes et al. (2011)) to the aqueous mobile phase (water) increased 

the response factor of free and brominated estrogens by factors of 20 and 2.6, 

respectively (Figure 2). Response factors for conjugated estrogens were the same or 

slightly lower under these conditions, yet the instrument was inherently more sensitive to 

these forms of estrogens since they are mostly ionized at environmental and mobile phase 

pH. Using acetonitrile (ACN) in place of MeOH as the organic mobile phase has been 

shown to increase ionization efficiency for estrogens during negative ionization mode 

electrospray (Benijts, Dams et al. 2002; Reddy, Iden et al. 2005). Therefore, we tested 

ACN, both alone and with ammonium fluoride (1 mM), but found minimal differences in 

chromatographic separation and signal intensity compared to MeOH (Figure 2).  

 Since analyte retention times initially varied by 5 – 10 % due to laboratory 

temperature fluctuations over the course of long sequence runs, we installed a column 

heating jacket and tested a range of column temperatures (25 – 40 ºC). We found that 30 

ºC was the best compromise between retention time stability and ion signal strength for 

our suite of estrogens.  
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2.3.2  SRM channel cross-over 

 We investigated the extent to which each authentic estrogen standard contributed 

to signal response in all other monitored SRM channels. So-called SRM channel “cross-

over”(or signal bleed) can result from impurities in authentic standards, isotopic artifacts, 

or instrumental settings (e.g., m/z resolution). We quantified SRM channel cross-over by 

injecting individual estrogen standards at equal concentrations, monitoring all SRM 

transitions, and comparing peak areas. These tests demonstrated that for any single SRM 

channel, the target estrogen contribution was typically 2000x larger than the contribution 

from any non-target estrogen and 75x larger than the combined contribution from all non-

target estrogens. Contributions from deuterated surrogate internal standards were 

negligible, except for a 1.6 % contribution from E1-3S-d4 to the SRM channel for E2-3S.  

 

2.3.3  Gradient optimization 

 Several mobile phase gradients were tested, including simple gradients of varied 

steepness (2 – 9 % min-1), and complex gradients containing multiple isocratic holds.  

The chosen gradient (7 % min-1) had the advantages of (1) greatly reducing analysis time 

without sacrificing separation or sensitivity of other estrogens, and (2) separating EE2 

from a large co-eluting wastewater matrix interference. It is possible that this matrix 

interference, which is present in both of the SRM channels used to monitor EE2 and 

elutes very close to EE2, could lead to overestimates of EE2 in similar wastewater 

matrices. This is remarkable given the expected high degree of selectivity of UHPLC-

MS/MS instruments.  

 

2.3.4  Matrix effects 

 We expected to observe significant and variable matrix effects due to the 

chemical complexity of wastewater effluent, the diverse suite of target analytes, and a 

relatively non-selective solid phase extraction protocol without additional clean-up steps. 

The International Union of Pure and Applied Chemistry (IUPAC) defines a matrix effect 
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as “the combined effect of all components of the sample other than the analyte on the 

measurement of the quantity” (IUPAC 2012). This broad definition would include matrix 

effects on sample extraction efficiency as well as instrumental response. However, in this 

study, we follow the convention described by Matuszewski et al. (2003), where matrix 

effects refer only to the instrumental response (e.g., ion suppression or enhancement), 

while percent recovery (or recovery efficiency) is used to characterize the extraction 

procedure (see below).  

Since it was not practical to obtain or produce a wastewater matrix that was free 

of estrogens, we calculated matrix effects based on the ratio of the response factors 

(calibration curve slope) for estrogens spiked into wastewater matrix extracts and neat 

solvent (Kang, Hick et al. 2007). The matrix effects observed in this study (see Table 1) 

are consistent with ion suppression reported in other studies of estrogens in wastewater 

matrices (Kang, Hick et al. 2007; Backe and Field 2012). Notably, glucuronide 

conjugates exhibit severe ion suppression, which is likely the result of high 

concentrations of co-eluting polar interferences near the solvent front.  

 

2.3.5  Wastewater recovery (UHPLC-MS/MS) 

 The range of estrogen percent recovery from spiked (~ 33 ng L-1) wastewater 

samples was 68 – 136 % with the exception of the glucuronide conjugates, which varied 

between 12 – 25 % (Table 1). In low-carbon deionized water and artificial seawater, E3-

3G (logKOW = 0.56) was poorly recovered, yet the other three glucuronides (logKOW = 

1.58 – 2.27) were recovered at 89 – 107 %. The halogenated estrogens generally had 

lower recoveries in low-carbon deionized water and artificial seawater compared to 

wastewater. In artificial seawater, the glucuronides and free estrogens also exhibited 

significantly higher percent recoveries.  This may be related to salt-induced ionization 

enhancement in the LC source or enhanced sorption onto the SPE disks due to 

complexation with cations in seawater.  
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2.3.6  SPE disk break-through (LC/DAD) 

 We investigated the influence of disk type (Empore SDB-XC and carbon; 3M, St. 

Paul, MN), extraction flow rate (25 – 200 mL min-1), sample volume (0.85 – 8 L), ionic 

strength (0 – 0.7 M as NaCl, CaCl2, and MgCl2), pH (5.76 – 11.50), and elution solvents 

(methanol, 80:20 dichloromethane (DCM)/MeOH, and 5mM tetramethylammonium 

chloride (TMACl) in 80:20 DCM/MeOH) on estrogen extraction efficiency (see 

Appendix B). Representative estrogens of each class (conjugated: E2-3S, free: E2, and 

halogenated: monoBrE2) were spiked into water, extracted with SPE disks, eluted, and 

analyzed by LC/DAD. These tests demonstrated satisfactory recoveries of all three 

classes of estrogens over a wide range of salinity, pH, flow, and water volume (Appendix 

B). Disk material seemed to be the determining factor for efficient extraction. On SDB-

XC disks, E2 and monoBrE2 were extracted more efficiently (80 – 120 %) than the more 

polar E2-3S (60 – 90 %). While carbon disks eliminated problems related to break-

through, the recovery of all estrogens (E2-3S, E2, and monoBrE2) from carbon was low 

(30 – 60 %) due to inefficient removal of estrogens from the disk despite the use of 

strong eluting solvents (e.g., 5mM TMACl in 80:20 DCM/MeOH; (Gentili, Perret et al. 

2002)), long soak times, and backflush elution. Given this limitation, SDB-XC disks were 

chosen for this study.  

 

2.3.7  Method limit thresholds 

The critical level (LC), detection limit (LD), and quantification limit (LQ) (Currie 

1995) were calculated for each analyte (Table 1) using prediction intervals at the 95% 

confidence level and exponential functions to model the fact that the variance of 

instrumental response increases with concentration (i.e., heteroscedasticity) (see Gibbons, 

Coleman et al. 1997) following Zorn et al. (1999) (Figure SI-2). We chose not to use the 

standard EPA method detection limit (MDL) definition because it is based on variance at 

a single concentration, does not consider data heteroscedasticity, and requires that 

analytes are not present in the blank matrix. LC, LD, and LQ are defined as follows (Currie 

1995):  
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LC is the level at which the probability of a false negative is 5% (for α = 0.05).  

LD is the level at which the probability of a false positive is 5% (for β = 0.05).  

LQ is the level corresponding to 10 times the standard deviation at LC.  

The LD values for the conjugated estrogens in this study (see Table 1) are ~ 2 – 10x 

higher than MDLs (based on S/N = 3) reported by Reddy et al. (2005) and Koh et al. 

(2007), which is not surprising given that our method does not employ the same 

extensive clean up steps. Yet, the LD values reported here are in line with other studies 

reporting limits of detection (LOD) for estrogens in WWTP effluent (Gentili, Perret et al. 

2002; D'Ascenzo, Di Corcia et al. 2003; Gomes, Birkett et al. 2005; Zuehlke, Duennbier 

et al. 2005; Schlusener and Bester 2008; Sun, Yong et al. 2009).  

Our ability to target a wide range of estrogens with minimal sample preparation 

steps comes at the cost of relatively high method limit thresholds for some analytes. For 

example, the LQ thresholds for diClE3 (27 ng L-1) and diBrEE2 (18 ng L-1) are higher 

than one would expect for a typical effluent. The relatively high LQ of some other 

analytes (e.g., E1, E2, monoBrE2, and diClE2) is a function of the greater uncertainty in 

extrapolating experimental variance from a high ambient concentration to zero 

concentration (Zorn, Gibbons et al. 1999) (see Figure SI-2).  

 

2.3.8  Estrogen concentration and potency in treated wastewater effluent 

 We found a wide range of estrogens in DITP effluent at all sampling times 

(Figure 3; Table SI-3). Free estrogen concentrations were consistent with other 

wastewater effluents (Gentili, Perret et al. 2002; D'Ascenzo, Di Corcia et al. 2003; 

Lagana, Bacaloni et al. 2004; Zuehlke, Duennbier et al. 2005; Nakamura, Kuruto-Niwa et 

al. 2007; Lien, Chen et al. 2009), but we found generally lower concentrations of sulfate 

conjugates than expected based on previous studies (Koh, Chiu et al. 2007; Schlusener 

and Bester 2008; Gomes, Scrimshaw et al. 2009). In contrast, halogenated forms, 

especially monoBrE2 and diClE2, were present at unexpectedly high concentrations – on 

par with, or greater than, free forms. Moreover, this trend was consistent across a range 

of sampling times and DITP conditions.  
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 Estrogen concentrations for each grab sample (GRAB) and its corresponding 24-

hour composite sample (COMP) were remarkably similar for many analytes. Exceptions 

include E1 and E2, which were consistently higher in grab samples, and monoBrE2, 

which was always higher in composite samples. These observations could be explained 

by free estrogen degradation and continued bromination reactions during composite 

sample holding times. 

Had we focused only on free estrogens, we would have missed 60 – 70 % of the 

total estrogen load in DITP effluent on a molar basis. In fact, we find that over half of all 

measured steroidal estrogens were present in the halogenated form.  This finding likely 

applies to most wastewater systems that contain bromide ion and rely on chlorine for 

disinfection, and should help in reevaluating estrogen fate during transport through 

sewers and wastewater treatment plants.  The prevalence of halogenated forms observed 

here also warrants closer examination of whether these more hydrophobic forms may 

pose a risk to organisms via bioaccumulation and increased exposure in sewage-impacted 

waters.  

Studies have found that halogenated estrogens typically have lower estrogenic 

potency than free forms as measured by estrogen receptor binding affinity, YES assay, 

and E-screen tests (Lee, Escher et al. 2008; Liu, Kanjo et al. 2009). Yet, it is not clear that 

these tests adequately control for potency underestimation biases due to sorption of 

hydrophobic estrogens onto test materials (see Appendix C). And, while steric hindrance 

between halogen atoms on estrogen’s aromatic ring and the estrogen receptor would be 

expected to reduce binding strength, electron-withdrawing properties of halogen atoms 

might increase binding strength by increasing the H-bond donation capacity of the 

phenolic OH group (Anstead, Carlson et al. 1997; Fang, Tong et al. 2001).  

If we combine available empirical potency data for estrogens (Lee, Escher et al. 

2008; Liu, Kanjo et al. 2009) with measured concentrations, we find that the total 

normalized concentration of estrogens in Deer Island effluent is 14 – 22 ng E2 

equivalents L-1, as measured by ER binding, YES, and E-screen. To this total, monohalo 
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forms (monoBrE2 and monoClEE2) contribute about 10 %, while free forms (especially 

E1, E2, and EE2) make up the remainder.  

 

2.3.9  Saltwater intrusion and estrogen halogenation 

DITP monitors daily chloride ion concentration for a variety of purposes 

including evaluating saltwater intrusion into the system. For our sampling dates, chloride 

ion concentrations ranged between 316 – 725 mg L-1 in the influent and 359 – 548 mg L-1 

in the effluent (pers comm, Lisa Wong, MWRA, August 30, 2012). If seawater contains 

~ 19500 mg L-1 chloride and source water to the plant (drinking water) contains ~ 23 mg 

L-1 chloride (pers comm, Andrea Rex, MWRA, June 3, 2011), a mass balance calculation 

suggests that influent contained 1.5 – 3.6 % seawater on our sampling days. Seawater 

contribution to influent was highest during the DI-1205b sampling when diBrE2 and 

diClE2 were at their maximum (Figure 3). In fact, excluding the DI-1203 time point, 

diClE2 concentrations are positively correlated with influent seawater contribution (R2 = 

0.90). In contrast, monoBrE2 does not correlate (R2 = 0.04) with seawater contribution, 

perhaps because it is readily formed in the presence of hypobromite, even at low levels 

(Acero, Piriou et al. 2005).  

 Reddy et al. (2005) suggest that the loss of tritiated E2-3G in influent over 2 h 

period was due to conversion to free estrogens (E1 and E2). Others have also seen 

conversion of glucuronides to sulfates and free forms (D'Ascenzo, Di Corcia et al. 2003). 

We see the opposite trend – higher glucuronide concentrations, and considerably lower 

sulfate concentrations than previous studies have reported for secondary treated 

wastewater effluent (D'Ascenzo, Di Corcia et al. 2003; Reddy, Iden et al. 2005). It 

remains an open question whether conjugates might also undergo significant conversion 

to halogenated forms, especially in wastewater treated with hypochlorite.  

 

2.3.10  Halogenation kinetics 

 In order to investigate the relative abundance of free and halogenated forms 

observed in DITP effluent, we constructed and tested a model of estrogen halogenation 
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kinetics. The model includes the following suite of reactions as described in detail 

previously (Acero, Piriou et al. 2005): (1) acid-base equilibria of estrogen (phenol / 

phenolate), hypohalite (HOX / OX-), and ammonia (NH4+ / NH3) species; (2) reactions of 

hypohalite with ammonia and natural organic matter; (3) formation of hypobromite 

(HOBr / OBr-) by reactions between hypochlorite (HOCl / OCl-) and bromide ion (Br-); 

and (4) estrogen chlorination and bromination. Since the slight structural differences 

between estrogen families (e.g., E1, E2, E3, and EE2) are positioned far away from the 

reactive phenolic A-ring, all estrogen halogenation rate constants were set equal to those 

determined for the EE2 family (Lee and Von Gunten 2009). The model was tested by 

confirming that outputs matched those of Acero (2005) when run under the same 

conditions and with the same rate constants.  

 We exercised the model with the E2 family of estrogens since this family 

exhibited the broadest range of observed halogenated forms in DITP. The average 

concentrations of E2, monoBrE2, diBrE2, and diClE2 in DITP effluent were 23, 96, 18, 

and 46 pM, respectively. Full scan spectral analysis (retention time, m/z, and 

characteristic isotopic pattern) indicated the presence of 2,4-bromo-chloro-17β-estradiol 

(diBrClE2), but we lacked the appropriate standard for quantifying diBrClE2. Using 

realistic (or directly measured) conditions for the DITP disinfection basin, the model was 

unable to reproduce the observed relative abundances of all four species in the E2 family. 

In particular, it was not possible to simulate the relatively high diClE2 concentrations 

without severely affecting the relative abundances of E2, monoBrE2, and diBrE2 (e.g., 

Figure SI-3).  

 It is possible that estrogens are halogenated in toilets and sewers prior to arriving 

at the DITP since the Boston potable water supply arrives at homes with ~ 1 mg L-1 free 

chlorine concentrations (MWRA 2012). To test the hypothesis that significant 

halogenation of estrogens could occur prior to the wastewater disinfection basin, we 

exercised the model using realistic (or directly measured) conditions for tap water and 

transport through sewers. While the model output was sensitive to initial conditions, in 

many cases it was able to simulate estrogen halogenation dominated by mono- and di-
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chloro estrogens. When the tap/sewer and disinfection basin models were run in series, 

we found it possible to exactly simulate the observed values in effluent, but only if we 

allowed for significant diClE2 inputs to DITP (Figure SI-4).  

 Despite the uncertainties inherent in these modeling efforts, our results are 

consistent with the observed relative abundance of the halogenated forms of E2, and 

point to the potential for measurable estrogen halogenation in toilets and during transport 

through sewers.  

 

2.3.11  Redefining removal 

This work demonstrates that halogenated estrogens can be an important 

component of wastewater effluent estrogen loads and should be considered in estrogen 

flux calculations. Our findings also support the idea that metrics of micropollutant 

“removal” depend strongly on our ability to identify, measure, and characterize the full 

suite of transformation by-products and metabolites produced during wastewater 

treatment (Stadler, Ernstoff et al. 2012).  

 

  



 73 

Acknowledgments 

 We are indebted to Lisa Wong, Andrea Rex, Mike Mickelson, and the staff at the 

Massachusetts Water Resources Authority for their generous assistance with collecting 

samples and data from Deer Island Treatment Plant. We also thank James Hunter, 

Anthony Carrasquillo, Sean Kessler, and Benjamin Scandella who helped design and 

debug the kinetic model described here, as well as David Sedlak for his thoughtful 

insights. This work was supported by the Martin Family Society of Fellows for 

Sustainability, the Ocean Ventures Fund and Coastal Ocean Institute at the Woods Hole 

Oceanographic Institution, MIT Sea Grant, and by a U.S. Environmental Protection 

Agency STAR graduate fellowship (FP-91713401). 



 74 

 Figure 1. Procedural flow chart for extracting and quantifying estrogens in wastewater 

effluent.  
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Figure 2. Ammonium fluoride increases the response factor of free and brominated 
estrogens in negative mode electrospray ionization using a neat standard solution at 1 µg 
mL-1. 
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Figure 3. Estrogens in Deer Island Treatment Plant wastewater final effluent on four 
days in 2012 (14 March, 30 March, 16 May, and 31 May). Grab samples and 24-h 
composite samples are designated “GRAB” and “COMP,” respectively, and estrogens are 
ordered by LC retention time. A single asterisk (*) denotes that no peaks were detected. 
A double asterisk (**) denotes anomalously high quantification limit thresholds (LC, LD, 
and LQ) due to co-eluting matrix interferences.  
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Figure SI-1. UHPLC-MS/MS selected reaction monitoring (SRM) chromatograms show 
the separation of 25 estrogens in a wastewater sample spiked at 100 ng mL-1. Retention 
times (minutes) are shown above each peak, while chemical structures and characteristic 
precursor/product ion transitions used for quantitation are shown beside each trace.  
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Figure SI-2. Determination of method limit thresholds (LC, LD, and LQ) following Zorn 
et al. (1999).  
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Figure SI-3. A kinetic model of E2 halogenation – seeded only with E2 (200 pM) – was 
unable to match the observed relative abundances of E2 and its halogenated derivatives in 
the DITP disinfection basin. In this example, the ratio of monoBrE2 to diBrE2 to diClE2 
is correct at ~ 20 min, but E2 concentrations are far out of line with observations.  
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Figure SI-4. Measured E2 family concentrations (bars ± 1 SD) in DITP effluent could 
only be fit by a kinetic model of estrogen halogenation (lines) that allowed for diClE2 
production prior to the start of disinfection (at time zero). The plot shows modeled trends 
as treated effluent moves through the DITP disinfection basin (residence time ~ 45 min).  
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Table 1. Method performance overview 
 

 Method Limit Thresholdsa 
(ng L-1 effluent)  RE (%)c 

Analyte LC LD LQ ME (%)b WW MQ SW 
E3-3G 0.46 1.00 2.55 2 12 17 55 
E1-3G 0.06 0.11 0.29 7 25 89 104 
E2-3G 0.28 0.57 1.48 6 14 91 105 

EE2-3G 0.11 0.23 0.60 9 20 91 107 
E1-3S-d4 n/a n/a n/a 61 136 68 110 

E1-3S 0.23 0.47 1.21 74 104 106 109 
E2-3S 0.14 0.30 0.77 72 101 98 106 

EE2-3S 0.07 0.13 0.34 74 101 97 106 
E3 0.06 0.13 0.34 123 129 118 198 

monoClE3 0.09 0.18 0.45 33 85 74 113 
E1-d4 n/a n/a n/a 99 117 76 86 

E1 0.64 1.31 3.39 107 108 104 130 
E2 0.55 1.13 2.92 67 114 111 156 

EE2 0.26 0.54 1.39 39 120 75 82 
diClE3 8.96 17.9 27.4 40 82 82 148 

monoClE1 0.69 1.51 3.30 96 102 56 55 
monoBrEE2 0.66 1.43 3.14 35 101 44 37 
monoBrE2 1.48 3.19 8.18 64 111 64 65 

monoClEE2 0.19 0.38 0.84 41 99 49 42 
monoClE2 0.25 0.52 1.33 64 68 74 75 

diClE1 0.17 0.34 0.88 102 95 66 68 
diClEE2 0.38 0.81 2.09 67 89 55 55 
diClE2 1.37 2.93 7.36 90 80 56 84 

diBrEE2 5.98 12.0 18.3 60 82 38 36 
diBrE2 1.06 2.31 5.79 85 69 62 66 

        
pH     6.6 6.1 7.9 

 
a Method Limit Thresholds (LC, LD, LQ) as calculated by a calibration method that models the standard 
deviation of the response ratio as a function of concentration (Zorn, Gibbons et al. 1999).  
 
b ME (%) = matrix effect as determined by dividing the analyte response factor (calibration line slope) in 
wastewater by the corresponding response factor in neat solvent (Matuszewski, Constanzer et al. 2003; 
Kang, Hick et al. 2007). The average relative standard deviation of calculated matrix effects is 5 %.  
 
c RE (%) = percent recovery from wastewater effluent (WW), artificial seawater (SW), and low-carbon 
deionized water (MQ) per Matuszewski et al (2003). This definition of RE, therefore, reflects only sample 
handling and extraction steps. Peak areas for this set of calculations are not normalized to SIS peak area. 
Since SW recoveries are referenced to neat solvent, the effect of ionic strength on ionization efficiency in 
the mass spectrometer is unknown, but could explain why this set displays a wider range of recoveries.   
 
n/a = not applicable 
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Table SI-2. UHPLC-MS/MS analytical method parameters 
 

Analyte 
RT 

(min)  
precursor 

(m/z) 
product 

(m/z) 
Q = 

quant ion 
SRM 

collision E S-lens polarity 
E3-3G 1.06 463 113 

 
21 87 neg 

  
463 287 Q 42 87 neg 

E1-3G 2.86 445 113 Q 21 90 neg 

  
445 269 

 
40 90 neg 

E2-3G 3.07 447 113 
 

21 92 neg 

  
447 271 Q 42 92 neg 

EE2-3G 3.21 471 113 
 

22 78 neg 

  
471 295 Q 39 79 neg 

E1-3S 3.83 349 145 
 

55 79 neg 

  
349 269 Q 33 79 neg 

E2-3S 4.07 351 145 
 

56 79 neg 

  
351 271 Q 35 79 neg 

E1-3S-d4 3.82 353 147 Q 55 73 neg 

  
353 273 

 
33 73 neg 

EE2-3S 4.17 375 145 
 

58 85 neg 

  
375 295 Q 34 85 neg 

E3 5.15 287 143 
 

54 80 neg 

  
287 171 Q 37 80 neg 

monoClE3 6.72 321 35 Q 31 81 neg 

  
321 285 

 
30 81 neg 

E1 7.4 269 143 
 

55 50 neg 

  
269 145 Q 39 50 neg 

E2 7.64 271 145 
 

41 50 neg 

  
271 183 Q 42 50 neg 

E1-d4 7.38 273 145 
 

57 77 neg 

  
273 147 Q 39 77 neg 

EE2 7.55 295 145 Q 40 50 neg 

  
295 159 

 
36 50 neg 

diClE3 7.68 355 323 Q 39 78 neg 

  
357 325 

 
39 78 neg 

monoClE1 8.46 303 179 Q 40 50 neg 

  
303 267 

 
29 50 neg 

monoClEE2 8.7 329 293 
 

30 50 neg 

  
329 301 Q 26 50 neg 

monoBrE2 8.55 349 79 Q 39 88 neg 

  
351 81 

 
38 88 neg 

monoBrEE2 8.4 373 79 Q 38 87 neg 

  
375 81 

 
39 79 neg 

monoClE2 8.83 305 35 
 

27 76 neg 

  
305 269 Q 31 76 neg 

diClE1 9.14 337 213 Q 41 50 neg 

  
339 215 

 
40 50 neg 

diClE2 9.53 339 307 Q 38 85 neg 

  
341 309 

 
39 84 neg 

diClEE2 9.34 363 335 Q 29 83 neg 

  
365 337 

 
29 82 neg 

diBrE2 9.91 429 79 
 

44 50 neg 

  
429 81 Q 42 50 neg 

diBrEE2 9.69 453 79 Q 46 78 neg 

  
453 81 

 
45 78 neg 
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Abstract 
 Estrogens are known to be potent endocrine disrupting chemicals that are 

commonly found in wastewater effluents at ng L-1 levels. Yet, we know very little about 

the distribution and fate of estrogens in coastal oceans that receive wastewater inputs 

from megacities. This study characterizes, for the first time, a wide range of steroidal 

estrogens in sewage-impacted seawater using a novel ultra high performance liquid 

chromatography (UHPLC) tandem mass spectrometry (MS/MS) method together with 

the method of standard addition. In Massachusetts Bay, we find conjugated, free, and 

halogenated estrogens at concentrations that are consistent with dilution at sites close to 

the sewage source. At a site 6 miles downstream of the sewage source, we observe E1 

concentrations (0.5 ng L-1) that are nearly double the nearfield concentrations despite 9-

fold dilution of carbamazepine, which was used as a conservative sewage tracer. Our 

results point to background estrone (E1) concentrations of 0.2 – 0.3 ng L-1, derived 

largely from sources unrelated to wastewater effluent.  

 

  



 94 

3.1  Introduction 

Steroidal estrogens are known to disrupt the normal development of fish at sub-ng 

L-1 levels. And while much is known about the concentration of estrogens in rivers, lakes, 

and wastewater treatment plant (WWTP) effluents, much less is known about estrogen 

levels in coastal oceans, which often receive large treated and untreated sewage 

discharges from coastal cities.  

Estrogens can take a variety of forms. To date, research has focused on the 

distribution and toxicity of free (i.e., non-conjugated) estrogens (Baronti, Curini et al. 

2000; Kolpin, Furlong et al. 2002; Johnson, Williams et al. 2007; Kidd, Blanchfield et al. 

2007). Yet we know that most human and animal estrogens are excreted as sulfate or 

glucuronide conjugates, which have polar groups that are attached to the free estrogen 

skeleton at carbon number 3, 16, or 17 (Axelson, Sahlberg et al. 1981) to aid with 

excretion from the body. Conjugates are much less potent than free estrogens (Burgess 

2003), yet, during their time in sewers, WWTPs, and receiving waters, conjugated 

estrogens can be transformed by bacteria back into the highly potent free forms (Gomes, 

Scrimshaw et al. 2009).  

The properties of free and conjugated estrogens vary widely (see Table 1 in 

Chapter 1), causing very large differences with respect to their involvement in specific 

fate processes. To date, there have been only a few studies of the fate of conjugates in 

sewers and WWTPs (Gomes, Scrimshaw et al. 2009 and references therein), and none 

that investigate the fate of estrogen conjugates in marine environments.  

Halogenated derivatives of estrogens are also formed during wastewater 

disinfection with chlorine (Nakamura, Kuruto-Niwa et al. 2007). Chlorinated and 

brominated estrogens are more likely to bioaccumulate (larger KOW) and also more acidic 

than free estrogens (see Table 1 in Chapter 1). Typically, estrogens exhibit unchanged or 

slightly decreased estrogenic activity upon chlorination (Mukawa, Suzuki et al. 1988; 

Moriyama, Matsufuji et al. 2004; Nakamura, Shiozawa et al. 2006). Despite the 

widespread use of chlorine to disinfect wastewater, only a few studies have considered 

the importance of chlorinated estrogens in wastewater effluents and the environment (Hu, 
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Cheng et al. 2003; Moriyama, Matsufuji et al. 2004; Nakamura, Shiozawa et al. 2006; 

Nakamura, Kuruto-Niwa et al. 2007; Wu, Hu et al. 2009). Recent work (Chapter 2) has 

demonstrated that chlorinated and brominated estrogens may represent a large portion of 

the estrogen load delivered by wastewater treatment plants to receiving waters.  

Yet, the mass balance, cycling, and environmental impacts of halogenated 

estrogens (in addition to free and conjugated forms) in sewage-impacted coastal 

ecosystems remains unclear.  

Massachusetts Bay is a well-characterized coastal system within the Gulf of 

Maine that receives large wastewater discharges, contains diverse recreational and 

commercial fisheries, and is home to protected marine mammal populations.  

This study examines the distribution of steroidal estrogens in Massachusetts Bay 

by characterizing concentrations near the sewage outfall, as well as up- and down-current 

of the sewage plume. Estrogen dynamics are investigated by comparing measured 

concentrations in Massachusetts Bay to modeled values after accounting for inputs from 

the Deer Island Treatment Plant (DITP) and dilution based on the conservative sewage 

tracer, carbamazepine. This analysis enables us to ascertain whether natural background 

estrogens and/or sources beyond the Deer Island outfall are important contributors, as 

well as to understand how different estrogen species (free vs. conjugated vs. halogenated) 

respond to transport and transformation processes controlling their environmental 

distributions.  

 

3.2  Methods 

3.2.1  Study site 

Massachusetts Bay is a semi-enclosed embayment that is surrounded by the 

greater Boston metropolitan area and includes an open boundary with the Gulf of Maine 

(Figure 1). Massachusetts Bay has an average depth of 35 m and an area of 

approximately 3200 km2 (Gustafsson, Long et al. 2001; Jiang and Zhou 2008). It receives 

significant nutrient and pollutant loads from adjacent Boston Harbor and the DITP outfall 

located 15 km offshore (Figure 1). Massachusetts Bay is also home to Stellwagen Bank 
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National Marine Sanctuary and near to the Cape Cod Bay Right Whale Sanctuary. The 

DITP outfall delivers, on average, 360 million gallons per day (MGD; 15.8 m3 s-1) of 

treated wastewater effluent to Mass Bay via a 2 km-long diffuser on the seafloor at a 

water depth of 34 m (Delaney and Rex 2007). Dilution factors are approximately 150:1 at 

the diffuser line, and increase to >1000:1 in the eastern part of the Bay (Hunt, Mansfield 

et al. 2010). 

 During the summer, when Massachusetts Bay is vertically stratified, effluent rises 

to ~ 15 m below the water surface where it is trapped by the pycnocline and transported 

laterally by currents in the bay.  In all other seasons, when stratification is weak or non-

existent, the effluent plume mixes throughout the water column as it rises towards the 

surface.  

 

3.2.2  Sampling locations 

 We collected Massachusetts Bay water at a depth of 10 – 12 m from aboard the 

M/V Columbia Point during times of relatively weak stratification – on 17 October 2012 

(MB-1210), 8 May 2013 (MB-1305a), 9 May 2013 (MB-1305b), and 15 May 2013 (MB-

1305c). Station locations (Table SI-1) were chosen so as to characterize initial mixing in 

the nearfield (near the diffuser) and to capture the effect of additional dilution and 

degradation as water moved away from the diffuser.  

The nearfield plume station (“PLM”) was located ~ 100 m down-current of the 

diffuser, but since tidal currents varied over the course of a day, the physical location of 

this station also varied (Figure 1). Station PLM was occupied on both 17 October 2012 

and 8 May 2013.  

An up-current (or upstream) station (“US”) and a Boston Harbor station (“BH”) 

were chosen so as to capture representative source water to station PLM. These sites were 

sampled on 15 May 2013, and care was taken to confirm that winds (Boston Logan 

Airport; National Weather Service) and currents pushed water to the East-Southeast in 

the preceding 48 hours to minimize any possible contributions from nearfield PLM water 

to station US. Current direction and velocity forecasts in Massachusetts Bay were taken 
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from a hydrodynamic transport model (Chen, Liu et al. 2003; Chen, Beardsley et al. 

2009) that is available online (porpoise1.smast.umassd.edu:8080/fvcomwms/). 

The down-current (or downstream) stations “DS1” and “DS2” were located 

approximately 1 and 6 nautical miles (1.8 and 11 km) down-current of station PLM based 

on net water flow in the 24 – 48 hours following PLM sampling. At an estimated net 

current velocity of 0.04 m s-1, approximate travel times between the nearfield PLM 

station and stations DS1 and DS2 are 13 h and 78 h, respectively.  

 During each sampling cruise, ancillary data were collected using a calibrated YSI 

6890 multi-sensor that measured temperature, conductivity, pH, turbidity, and dissolved 

oxygen. Profile data were recorded at each station to characterize water column 

stratification, identify any obvious signals of a wastewater plume, and inform decisions 

about sampling depth.  

Unfiltered seawater was collected from depth at each station for subsequent 

measurements of nutrients (ammonium, nitrate, nitrite, phosphate, and silicate) as well as 

organic carbon and nitrogen concentrations and isotope (13C and 15N) ratios.  

Nutrient samples (30 mL) were filtered immediately through 47 mm 

polytetrafluoroethylene (PTFE) membrane filters (0.2 µm, Omnipore; EMD Millipore, 

Burlington, MA, USA) and stored at 4 °C (for 9 – 16 days) until analysis at the Nutrient 

Analytical Facility at the Woods Hole Oceanographic Institution. Dissolved organic 

carbon (DOC) samples were filtered through pre-baked (450 °C; 5 h) 47 mm GF/F filters 

(0.7 µm; Whatman/GE Healthcare, Kent, UK) into pre-baked (450 °C; 5 h) amber glass 

bottles (100 mL), acidified to pH 3 using concentrated hydrochloric acid (HCl), and 

analyzed at the Luce Laboratory of Environmental Chemistry at the Woods Hole 

Research Center. GF/F filters were stored at -20 °C, acidified by HCl fuming (Hwang, 

Montlucon et al. 2009), and analyzed for particulate organic carbon and nitrogen (POC 

and PON) abundance and isotopic composition at the Stable Isotope Laboratory at the 

Marine Biological Laboratory.  
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3.2.3  Effluent samples and tracers 

 Final effluent (grab and 24-h flow-weighted composite) samples were collected 

from DITP on four days in March and May 2012 (DI-1203, DI-1203b, DI-1205, and DI-

1205b; see Chapter 2). Additional DITP (grab and 24-h composite) samples were 

collected on 26 October 2012 (DI-1210) and 16 May 2013 (DI-1305) to coincide with 

Massachusetts Bay fieldwork (MB-1210 and MB-1305).  

The influence of DITP effluent in Massachusetts Bay waters is expected to vary 

in space and time according to discharge flow rates and current dynamics (Hunt, 

Mansfield et al. 2010). Thus, it was important to quantify the contributions from DITP 

effluent to each Massachusetts Bay sample. A variety of conservative sewage tracers 

have been proposed (Dickenson, Snyder et al. 2011). In this study, we quantify sewage 

contributions using the common pharmaceutical, carbamazepine, which is used to treat 

epilepsy, schizophrenia, and bipolar disorder. Carbamazepine has been shown to behave 

conservatively in coastal waters (Benotti and Brownawell 2007; Nakada, Kiri et al. 

2008), is known to be a consistent and ubiquitous component of wastewater effluent 

(Dickenson, Snyder et al. 2011), and had been previously detected in DITP effluent (in 

August and September 2007) at ~ 240 – 360 ng L-1 (pers comm, Andrea Rex, MWRA, 

November 20, 2009). We monitored caffeine as an alternate sewage tracer since it is 

known to degrade in natural waters with photodegradation and biodegradation half-lives 

of 12 and 231 days, respectively (Buerge, Poiger et al. 2003).  

 

3.2.4  Standards and solvents 

 The source and purity of each estrogen standard is described in detail in Chapter 

2. Carbamazepine and caffeine standards were purchased from Sigma-Aldrich (Saint 

Louis, MO, USA). Carbamazepine-d10 (98 %) was purchased from Cambridge Isotope 

Laboratories (Andover, MA, USA) and used as a surrogate internal standard (SIS).  

 SPE disk conditioning and elution solvents were isopropyl alcohol (Mallinckrodt 

AR), acetone (JTBaker Ultra Resi-Analyzed), methanol (MeOH; JTBaker Ultra Resi-

Analyzed), and deionized, low-carbon laboratory water (Aquafine Corp.; pH 6.1). 
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Injection solution and mobile phase solvents (methanol, acetonitrile, and water) were 

Optima® LC/MS grade from Thermo Fisher Scientific (Waltham, MA, USA).  

 

3.2.5  Seawater collection and extraction 

Seawater samples were pumped onboard (~ 2 L min-1) by a positive displacement 

pump (Fultz Pumps, Inc., Lewistown, PA, USA) that had stainless steel and PTFE 

contact surfaces and was connected to a 50 ft length of solvent-cleaned aluminum tubing 

(1/4 in o.d.), which was attached to a 293 mm stainless steel filter holder containing a 

pre-baked (450 °C; 5 h) GF/F filter (0.7 µm; Whatman/GE Healthcare, Kent, UK). The 

filtrate was split between two ~ 20 L glass carboys that had been soap and water cleaned, 

rinsed with deionized water, and rinsed 3x with sample water before collection. Each set 

of carboys was covered in black plastic throughout filling and processing.  

Once filled, each carboy was spiked with estrogen and carbamazepine SIS spiking 

mixtures (2.40 ± 0.01 µL in methanol or acetonitrile) and the appropriate 23-standard 

estrogen spiking mixture (2.70 ± 0.01 µL in methanol). At station PLM, two sets of two 

carboys were filled simultaneously and treated as duplicates to be spiked at the same 

level. At all other stations, two sets of two carboys were filled sequentially and each 

individual carboy was spiked at one of 4 spiking levels. Spike level 0 received only the 

SIS mixtures. Spike levels 1, 2, and 3 received the SIS mixtures plus the 23-estrogen 

mixture containing each estrogen at a nominal mass of 0.1, 1, and 10 ng, respectively. 

Carboys were swirled for 30 seconds to mix spikes evenly into the sample.  

Spiked seawater samples were then pumped through 90 mm diameter solid phase 

extraction (SPE) disks (Empore SDB-XC; 3M, St. Paul, MN, USA) previously 

conditioned with acetone, methanol, and low-carbon water. SPE disks were enclosed in a 

stainless steel filtration apparatus at the end of a stainless steel line containing a pressure 

gauge, a PTFE bellows pulse dampener (Blacoh, Riverside, CA, US), and a stainless steel 

metering pump (LMI Milton Roy, Acton, MA, USA) with a PTFE diaphragm. Sample 

flow rate through SPE disks was 250 – 300 mL min-1, pressures were kept below 30 psi, 

and only one disk was used per carboy.  
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Loaded SPE disks were dried by vacuum for 20 minutes (20 inHg) while still 

enclosed in the filter holder, then folded in half, enclosed in a pre-baked (450 °C; 5 h) 

aluminum foil pouch, and stored at -20 °C until eluted in the laboratory.  

After warming to room temperature, disks were eluted in a pre-baked (450 °C; 5 

h) and solvent-cleaned 90 mm glass filtration apparatus (EMD Millipore, Burlington, 

MA, USA) using two 20 mL aliquots of methanol. For each aliquot, 2 mL were pulled 

through the disk, which was allowed to sit for 1 min before the remaining 18 mL were 

pulled through. The eluate from each disk was collected in a pre-baked (450 °C; 5 h) 60 

mL amber vial and concentrated to ~ 1 mL under N2 at 40 °C. This extract was 

transferred to a 13 x 100 mL glass tube and reduced to near-dryness by vacuum 

centrifugation at 30 °C, and reconstituted in 60 µL of MeOH.  This solution was mixed 

by vortexing and allowed to sit overnight at 4 °C before adding 140 µL of water and 

vortexing to mix. The resulting opaque brown solution was transferred to a pre-baked 

(450 ºC; 5 h) vial with insert and stored at -20 ºC until analysis, which took place within a 

week.  

 

3.2.6  Analysis of estrogens  

 Estrogens were separated by ultra high performance liquid chromatography 

(UHPLC) and detected by tandem mass spectrometry (MS/MS) at the Woods Hole 

Oceanographic Institution FT-MS Facility. The electrospray ion source was operated in 

negative ion mode, and two precursor-product transitions were monitored for each 

estrogen. Instrumental conditions, mobile phases, gradients, flow rates, and selected 

reaction monitoring (SRM) parameters were the same as previously reported (Table SI-2; 

see also Chapter 2). An example chromatogram of Massachusetts Bay seawater extract 

spiked with 23 estrogens at 500 pg L-1 (Figure 2) shows how retention time, instrumental 

response, and matrix interferences vary between SRM channels.  
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3.2.7  Analysis of carbamazepine and caffeine 

Carbamazepine and caffeine were analyzed following Miao et al. (2003) by 

injecting sample extracts a second time after reconfiguring the instrument. The 

electrospray ion source was operated in positive mode, and separation was achieved 

using a Thermo® Hypersil GOLD C8 column (150 x 2.1 mm i.d., 5 µm particle size) 

fitted with a guard cartridge and a pre-column filter and kept at 30 °C within a Hot 

Pocket column heater (Thermo Scientific; Waltham, MA, USA). The mobile phase 

consisted of (A) water (10 mM ammonium acetate and 0.1 % v/v formic acid) and (B) 

2:3 acetonitrile/methanol. We used a linear gradient over 9 min (30 % – 100 % B) 

followed by a 4 min hold at 100 % B and a 7 min equilibration (30 % B) prior to the next 

injection. LC flow rates were 200 µL min-1 throughout. Two SRM transitions (Table 1) 

were monitored for each analyte, and peak areas were normalized by the SIS, 

carbamazepine-d10.  

  

3.2.8  SRM channel cross-over 

 SRM channel cross-over is the extent to which one compound, such as an internal 

standard, contributes to signal response in SRM channels of other analytes. This is 

common when an isotopically-labeled compound is added as a surrogate internal standard 

and contains small amounts of unlabeled impurities. We confirmed that contributions 

from SIS spikes to analyte SRM channels were generally negligible except for a small 

(1.6 %) contribution from E1-3S-d4 to the SRM channel for E2-3S (see Chapter 2). We 

also adjusted carbamazepine peak areas for small contributions from carbamazepine-d10 

impurities (0.27 %).  

 

3.2.9  Analyte quantification 

We used the method of standard addition (Boyd, Basic et al. 2008) to determine 

estrogen concentrations in Massachusetts Bay. Uncertainties were determined at the 95% 

(p = 0.05) confidence level assuming homoscedastic data.  In some cases only the highest 

spike level (~ 500 pg L-1) peaks were large enough to quantitate due to matrix 
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interferences and/or signal suppression, and standard addition concentrations were not 

reported for these analytes. In other cases, 95% confidence limits on calculated standard 

addition concentrations bracketed zero concentration due to large uncertainties in the 

slope and intercept of the standard addition relationship.  

Quantitation of estrogens in DITP effluent follows the procedure outlined in 

Chapter 2 using matrix-matched calibration curves from March 2012 (DI-1203) with two 

surrogate internal standards (E1-d4 and E1-3S-d4).  

Confirmation ion SRM data were analyzed separately and used to check that 

quantitation/confirmation ion ratios were within acceptable limits (see Chapter 2). 

Standard addition calculations were also repeated with confirmation ions and used as an 

additional check on results derived from quantitation ions.  

  Carbamazepine and caffeine concentrations in seawater and wastewater were 

quantified using SIS normalized neat (pure) solvent calibration curves. Since the SIS, 

carbamazepine-d10, was not added to samples prior to May 2013, we only report 

carbamazepine and caffeine data for DI-1305 and MB-1305 samples. Yet, we did detect 

both tracers in repeat injections of previously archived samples from October 2012 (MB-

1210 and DI-1210), and quantification by external calibration (i.e., no SIS normalization) 

allowed us to make a rough estimate of dilution at station PLM during MB-1210.  

 

3.3  Results and Discussion 

 We detected a wide range of estrogens in treated wastewater effluent and 

Massachusetts Bay seawater. Near the DITP diffuser line, estrogen concentrations were 

well approximated by simple dilution of effluent, with the exception of halogenated 

estrogens that exhibited highly variable DITP effluent concentrations. The analyses that 

follow suggest additional estrogen inputs to Massachusetts Bay from non-sewage 

sources, especially in offshore waters.  
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3.3.1  Ancillary data 

 At each station, depth profiles of temperature, salinity, dissolved oxygen, 

turbidity, and pH confirmed that the water column was weakly stratified during the May 

2013 sampling campaign (Figure SI-1; Table SI-3). Ammonium measurements were 

generally well correlated with the sewage tracers, carbamazepine and caffeine (Table 2; 

Table SI-4). The concentrations of dissolved and particulate organic carbon were 

consistent with previous measurements taken in Massachusetts Bay (Gustafsson, Long et 

al. 2001) and together suggest that sorption of estrogens onto particles and removal by 

settling is negligible for even the most hydrophobic estrogens (Table SI-5).  

  

3.3.2  Characterizing the source function (DITP effluent) 

 To characterize a major source of estrogens to Massachusetts Bay, we measured 

the same suite of estrogens in DITP effluent on 6 days between March 2012 and May 

2013. We consistently found E1, E2, E3, E1-3S, E2-3S, and diClE2 in DITP effluent 

(Figure 3). In contrast, several conjugated and halogenated forms were detected at high 

concentrations only on certain sampling dates. In particular, we observed sporadic but 

significant concentrations of E1-3G, monoBrE2, monoClEE2, and diBrE2.   

A kinetic model of estrogen halogenation was developed to describe the particular 

distribution of the E2 family observed in March – May 2012 (see Chapter 2).  During this 

period, monoBrE2 and diClE2 were dominant forms, but the model was only able to 

match the relative abundances of E2 and its halogenated forms by invoking chlorination 

upstream of the wastewater treatment plant in addition to the disinfection basin. We 

found that our model was highly sensitive to initial conditions, and thus it was not 

surprising that halogenated estrogen distributions varied with sampling time and 

wastewater characteristics (e.g., ammonium, bromide, hypochlorite, etc).  

 During May 2013 we observed concentrations of EE2 that were approximately 10 

times higher than expected (Figure 3). Based on current usage of oral contraception, we 

estimate that EE2 concentrations in Deer Island influent from excretion by women living 

in the metropolitan Boston area should be ~ 2 ng L-1 (Johnson and Williams 2004). This 
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estimate does not consider other therapeutic uses of EE2 (e.g., hormone replacement 

therapy) nor sources such as unused drug disposal in toilets.  

The cause of anomalously high EE2 is unknown, but may be related to a dumping 

event captured by the May 2013 sampling. To explain the observed EE2 concentration, 

given the average flow rate on that day (283 MGD; 12.4 m3 s-1), would require ~ 30 g (or 

1 million pills) of additional EE2 over 24 hours. Similar results for triplicate grab and 24-

h composite samples suggest that the extra EE2 would have become well mixed by the 

time it reached the final effluent stage.  

Neither EE2 conjugate (EE2-3G or EE2-3S) could be reported for the May 

sampling due to quantitation/confirmation ion ratios that were 3 – 10 times larger than 

expected, on average. Barring the influence of a co-eluting matrix interference, the 

apparent absence of EE2 conjugates in May 2013 lends support to the idea that the extra 

EE2 was dumped rather than excreted.  

 Because of the temporal variability of estrogen concentrations in DITP effluent 

(Figure 3; Table SI-6; Chapter 2 Table SI-3), only concurrent DITP measurements were 

used to define the DITP source function to Massachusetts Bay for the modeling efforts 

described below.  

 

3.3.3  Estrogens in Massachusetts Bay 

 We detected a variety of estrogens in Massachusetts Bay water, both near the 

diffuser (station PLM) and farther afield – in Boston Harbor (station BH), up-current of 

the diffuser (station US), and also down-current of the diffuser (stations DS1 and DS2; 

Figure 4; Table SI-7). We consistently found E1 at several hundred pg L-1 as well as E2, 

E1-3S, and E2-3S at lower levels throughout Massachusetts Bay (Figure 4; Table SI-7). 

We also found monoBrE2 (82 pg L-1) and diClE2 (1020 pg L-1) at station DS-2 and PLM, 

respectively. Sporadic detection of halogenated forms in the bay is consistent with the 

observed variability of halogenated estrogen levels in DITP effluent and highlights the 

importance of analyzing 24-h flow-weighted composite effluent samples from DITP on 



 105 

multiple days to accurately characterize estrogen fluxes (Ort, Lawrence et al. 2010; 

Teerlink, Hering et al. 2012).  

In Massachusetts Bay, many of the 23 estrogens were not detected or had 

concentrations that were statistically indistinguishable from zero at the 95 % confidence 

level. Typically, this resulted from large uncertainties in our standard addition 

calculations due to limited samples, truncated calibration curves, and/or matrix 

interferences. While we cannot report the definitive presence of estrogens whose 

uncertainty brackets zero concentration, we should also not conclude that this implies 

their absence. As we saw with wastewater effluent (Chapter 2), limits of detection can be 

influenced by a range of matrix interferences that can suppress ionization in the 

electrospray source or simply mask analyte peaks, even in putatively selective SRM 

channels, and especially with complex, highly concentrated samples.  

 

3.3.4  Tracers indicate variable DITP influence at station PLM 

 The extraction time required for large-volume samples (60 – 90 min) combined 

with shifting tides and plume dynamics near the diffuser raised the possibility that each 

sample set taken at station PLM could reflect different relative proportions of DITP 

effluent. This could bias the results of standard addition calculations if the variability in 

the ambient matrix were large compared to spiking levels.  

 In October 2012, tracer concentrations were similar (11 – 16 % coefficient of 

variation) in the four samples taken at station PLM, so we assume that DITP 

contributions to all MB-1210 nearfield samples were equal. Consistently low ammonium 

concentrations for MB-1210 samples also support this assumption (Table SI-4).  

In contrast, tracer data from May 2013 (MB-1305a; Table 2; Table SI-4) suggest 

that station PLM high spike samples (PLM-2 and PLM-3) contained larger relative 

proportions of DITP effluent than low spike samples (PLM-0 and PLM-1; Figure 5). 

Attempts to correct response ratios such that each spike level reflected the same DITP 

contribution were hindered by not knowing the relative proportions of spiked and 

background estrogens in analyte peaks.  
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We characterized the potential range of this bias for E1 at station PLM using two 

complementary approaches. In the first, we calculated an ambient E1 concentration for 

each of the 8 samples collected at PLM independently by subtracting the known spike 

concentration from the extract concentration determined by calibration against SIS-

normalized E1 standards in neat solvent. Using this method, we calculated 270 ± 120 pg 

L-1 of ambient E1 at station PLM. Notably, we calculated similar values regardless of 

spike level, and since E1 matrix effects are relatively small in both wastewater effluent 

and artificial seawater (8 and 30 % signal enhancement, respectively; see Chapter 2), the 

limitations of neat solvent calibration are likely to be minor.  

 In the second approach, we applied the method of standard addition separately to 

low spike samples and high spike samples. This approach takes standard addition to an 

extreme (where two levels define the standard addition line), but it has the advantage of 

nullifying the influence of variable tracer levels in our case. At station PLM, standard 

addition calculations yielded E1 concentrations of 30 ± 15 pg L-1 (low spike set), 630 ± 

150 pg L-1 (high spike set), and 323 ± 63 pg L-1 (full set). When compared to the average 

carbamazepine concentrations of each set, the high spike and full set exhibit similar 

carbamazepine:E1 ratios (4 – 5), whereas the low spike ratio (20) is significantly larger. 

This discrepancy suggests that the low spike result (30 pg L-1) underestimates the E1 

concentration at station PLM. This hypothesis is supported by the fact that simple 

dilution of DITP effluent yields E1 concentrations closer to 300 pg L-1 (see below). Neat 

solvent calibration suggests similar ambient levels (270 pg L-1). Moreover, we calculate 

263 pg L-1 E1 by standard addition at the up-current station (US), which, along with 

stations DS1, DS2, and BH, was unaffected by variable tracer levels since all spike level 

samples were collected within a 30 min window. In the analyses that follow, at station 

PLM we use standard addition concentrations determined from the full set of spike levels 

(e.g., E1 = 323 ± 63 pg L-1).  
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3.3.5  Estrogen fate in Massachusetts Bay 

 Massachusetts Bay sampling stations were chosen to follow the DITP plume as it 

mixed into bay water and moved with prevailing currents. Over time, we expected that 

estrogens within this plume would be removed by dilution, photodegradation, and 

biodegradation. Sewage tracers were used to predict estrogen concentrations after 

physical mixing (i.e., dilution) and thereby highlight potential additional sources or sinks 

of estrogens in Massachusetts Bay.  

 

3.3.6  Modeling nearfield E1 concentrations 

 We modeled nearfield water (station PLM) as a binary mixture of DITP effluent 

and water from station US, which represents the up-current (or “up-stream”) end-member 

and also captures contributions from the South Essex wastewater treatment plant (Salem, 

MA) ocean outfall. At station PLM, we used the conservative tracer, carbamazepine 

(Table 2), to determine the fractional contribution from DITP effluent and station US 

water. The average dilution factor (535-fold) at station PLM is higher than expected for 

the core of the effluent plume (~ 100-fold dilution; (Hunt, Mansfield et al. 2010)). This 

finding is consistent with enhanced plume mixing in a weakly stratified water column 

and the fact that half of the samples (low spike set) included in the average were collected 

from the edge of the plume, where carbamazepine concentrations were significantly 

lower (Figure 5).  

Using the same approach, salinity (Table 2) predicts 182-fold dilution at station 

PLM. This calculation is highly sensitive to the salinity at station US (31.74 PSU) such 

that if the salinity of the mixing parcel were reduced to 31.63 PSU by larger contributions 

from the Merrimack River, then salinity and carbamazepine would predict identical 

dilution factors at station PLM.  

After 535-fold dilution of DI effluent (15660 ± 2790 pg L-1 E1) with station US 

water (263 ± 12 pg L-1 E1) the carbamazepine-based model predicts an E1 concentration 

at station PLM of 292 ± 13 pg L-1, which agrees well with the measured value at this 

location (323 ± 63 pg L-1 E1). Sensitivity tests of this dilution model suggest that even 
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extreme assumptions about the temporal variability of DITP effluent carbamazepine 

concentrations (150 – 400 ng L-1; (Dickenson, Snyder et al. 2011)) have little effect (4 – 7 

%) on modeled E1 at station PLM since dilution is large in all cases and modeled 

concentrations remain strongly dependent on mixing parcel (station US) estrogen levels.  

The same dilution factor (535x) was applied to all estrogens, and the general 

agreement between modeled and measured values (Figure 6) suggests that dilution is the 

dominant process controlling estrogen concentrations near the diffuser.  Even the 

remarkably high diClE2 concentrations observed at station PLM on 8 May 2013 (MB-

1305a) are reasonably well predicted by the model, given the high diClE2 concentrations 

in DITP effluent on 16 May 2013 (DI-1305).  

In October 2012, carbamazepine and caffeine concentrations were, respectively, 

180 and 1300 times higher in DITP effluent than at station PLM. Because of the 

limitations of these non-SIS-corrected tracer data and the absence of an up-current 

station, we model estrogen levels at station PLM in October (MB-1210) by assuming that 

the dilution factor (535x) and composition of station US water are identical to the May 

2013 sampling (Figure 6).  

 

3.3.7  Influence of sampling timescales 

Mismatched water parcels and timescales between effluent samples and seawater 

samples are one likely cause of discrepancies between measured and modeled (dilution 

only) concentrations at station PLM. Yet for estrogens with consistent concentrations in 

DITP (Figure 3; E1, E2, E1-3S, E2-3S), we would expect that the parcel-timescale 

mismatch would be less pronounced since loadings are relatively stable. Indeed, we see 

that measured concentrations of these same estrogens at PLM agree well with our model 

based on dilution of wastewater collected several days later. In fact, this suggests that 

estrogens not modeled well at station PLM (e.g., EE2-3S, E3, and various halogenated 

estrogens; Figure 6) are species whose formation and loading to the bay are more 

sensitive to WWTP and sewer water conditions, including source water composition, 
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flow rates, bacterial activity, and levels of residual chlorine, bromide, natural organic 

matter, and ammonium.  

Poorly modeled species may also indicate uncharacterized sources such as 

combined sewer overflows, whose signal might be evident in Boston Harbor after large 

rainfall events. And although we see little direct evidence for some of these poorly 

modeled estrogens at station BH, we sampled during relatively dry weather and during an 

incoming tide when CSO influence would be expected to be small. Nonetheless, it is 

possible that the PLM station could exhibit characteristics of different water masses 

discharged from BH or other areas of the bay at earlier times.   

 

3.3.8  E1 production between stations DS1 and DS2 

Counter intuitively, as water was transported away from the diffuser (towards 

station DS1 and DS2) and diluted further (Figure 5), E1 concentrations increased (Figure 

7). The observed offshore increase could be caused by additional estrogen sources, 

estrogen inter-conversion, sewage tracer artifacts, or temporal variability in tracers and 

estrogens.  

This offshore increase in E1 is unlikely to be an artifact of non-conservative 

carbamazepine behavior for a several reasons. Photodegradation is ruled out since 

samples were collected well below the photic zone. Sorption of carbamazepine to 

particles and settling is unlikely given its small octanol-water partition coefficient (log 

KOW = 2.45 (Nakada, Tanishima et al. 2006)) and the low suspended solid concentrations 

in Massachusetts Bay (TSS ~ 1 mg L-1 (Hyde, O'Reilly et al. 2007)). And finally, 

microbial degradation of carbamazepine would be negligible over the short timescale (~ 1 

– 3 days) between PLM and DS2 (Nakada, Kiri et al. 2008).  

Although E1 could be produced by E2 degradation and/or deconjugation of E1-

conjugates during transit away from the diffuser, even the complete transformation of all 

the E2 and conjugated estrogens at station PLM would only explain ~ 10 % of the E1 

increase offshore. Moreover, E2 concentrations also increase significantly offshore 

(Figure 7). 
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An alternative explanation is that productive waters farther offshore (e.g., 

Stellwagen Bank) contribute relatively high ambient concentrations of E1 derived from 

extant fish and whale populations. To investigate this possibility, we begin by comparing 

measured E1 concentrations at downstream stations, DS1 and DS2, to concentrations 

expected by dilution alone.  

 

3.3.9  Modeling E1 concentrations at stations DS1 and DS2 

The down-current stations were modeled as mixtures of station PLM water and 

hypothetical “clean” (zero tracer, zero estrogen) water (Figure 7). Subsequent dilution 

calculations based on caffeine and carbamazepine data independently suggest at least 3 – 

8x dilution between PLM and the downstream stations. Yet, measured estrogen 

concentrations at DS1 and DS2 were significantly higher than dilution alone would 

suggest, and this was true for E1, E2, and E1-3S (Figure 7). Unfortunately, trends for 

many other estrogens, including diBrE2, were masked by large propagated uncertainties 

associated with standard addition calculations.  

Nonetheless, these results suggest that Massachusetts Bay seawater contains 

significant background levels of E1 and E2 derived from offshore sources that are likely 

unrelated to DITP effluent. Other studies have found that coastal ocean E1 concentrations 

can range from 40 – 800 pg L-1 (Atkinson, Atkinson et al. 2003; Beck, Bruhn et al. 2005), 

but none have yet been in a position to distinguish between sewage-derived and natural 

sources.  

 

3.3.10  Calculating background E1 ranges using independent dilution calculations 

It is possible that dilution-based estimates of background estrogen concentrations 

in Massachusetts Bay would be sensitive to our assumptions about tracer concentration in 

the mixing (background) water. Therefore, we calculated E1 concentrations in a 

theoretical mixing water parcel for each of a series of dilution steps (DI – PLM, PLM – 

DS1, DS1 – DS2) assuming a maximum range of carbamazepine concentrations in the 

mixing parcel.  
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At stations near the diffuser (PLM and DS1) and for all possible carbamazepine 

concentrations, we calculate a maximum range of 227 – 323 pg L-1 E1 in the mixing 

parcel, which is consistent with the “background” station US (263 pg L-1 E1). It is a 

different story farther offshore at station DS2, where we calculate a maximum range of 

524 – 2010 pg L-1 E1 in the mixing parcel. These results suggest that ambient E1 levels in 

Massachusetts Bay are ~ 275 ± 50 pg L-1 near the outfall and potentially 2 – 7 times 

greater in offshore waters close to Stellwagen Bank.  

 

3.3.11  Massachusetts Bay box model revisited 

 To investigate potential sources of high background E1 concentrations (~ 227 – 

2010 pg L-1), we constructed a simple well-mixed box model of Massachusetts Bay in 

which the primary E1 input is DITP effluent and removal processes are flushing (kflush = 

12 y-1), biodegradation (kdeg = 10 y-1), and sedimentation (see Chapter 1). When exercised 

with average DITP fluxes, our model predicts ~ 2 pg L-1 E1 in the bay, which is much 

lower than measured values. And, even if biodegradation is reduced to zero and the 

average depth of water into which the effluent is mixed is restricted to 10 m, the model 

still only predicts 19 pg L-1 E1. In fact, under this scenario, the model can only match 

observations if E1 levels in DITP effluent average 200 ng L-1, vastly more than we have 

measured (14 ± 3 ng L-1) in grab and 24-hr composite samples at DITP over the course of 

14 months. This implies that the model described above is missing a significant source of 

E1.  

 Other likely sources of E1 to Massachusetts Bay include combined sewer 

overflows, Charles River water, and leaking sewers – all delivered via Boston Harbor. In 

addition, we expect that the South Essex wastewater treatment plant effluent might also 

contribute estrogens to Massachusetts Bay.  In fact, station US was located in order to 

capture any up-current contributions from this sewage source to station PLM.  The South 

Essex WWTP discharges 30 MGD (1.3 m3 s-1) of treated effluent into Salem Sound 1.4 

mi offshore, and likely has similar concentrations of estrogens to DITP since they employ 

similar treatment processes (Perkins 2008). Moreover, these additional sources of 
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estrogens would include both E1 as well as estrogens that can be converted to E1 via 

deconjugation or degradation (e.g., E1-conjugates and E2).  

 If we include all of the above sources in the model at measured concentrations 

(Boston Harbor, DITP effluent) or expected ranges (South Essex WWTP) and best-guess 

parameters are used (e.g.,  kflush = 12 y-1, kdeg = 10 y-1), our model predicts 18 pg L-1 E1 in 

Massachusetts Bay. The level increases to 165 pg L-1 if the model is run using parameter 

and concentration values at the extreme edge of their practical ranges to push the model 

towards an upper limit estimate. And still, the model falls short of observed E1 

concentrations in Massachusetts Bay.  

 Under best-guess assumptions our expanded-source box model requires additional 

E1 contributions of 70 kg y-1 (or 5.5 µg m-3 y-1). Potential sources include marine 

vertebrates (e.g., fish and whales), Merrimack River discharge, sewer leakage and CSOs, 

septic system discharge, and sewage discharge from boats. Estimates suggest that marine 

vertebrates and Merrimack River sources could account for the missing E1 source needed 

to balance our box model of Massachusetts Bay (Table 3).  

Relatively low salinity (31.16 PSU) at station DS2 points to freshwater 

contributions, but even if we assume that DS2 is a binary mixture of DS1 water (31.59 

PSU) and freshwater from the Merrimack River (zero salinity, 3 ng L-1 E1 (Williams, 

Johnson et al. 2003)), concentration estimates at DS2 only reach 290 pg L-1 E1, which is 

far below the observed concentration (524 pg L-1). In addition, we have likely 

overestimated Merrimack River estrogen sources since biodegradation during transport 

away from the river mouth and into Massachusetts Bay was not considered.  

Vertebrate biomass seems the most plausible source given the proximity of highly 

productive waters of Stellwagen Bank and the observed increase in E1 at station DS2. 

Moreover, the combined excrement and urine of shoaling fish (Makris, Ratilal et al. 

2006) and large whales (Roman and McCarthy 2010), could create transient estrogen 

hotspots. Subsequent studies should characterize fish-specific steroidal markers (e.g., 11-

ketotestosterone; (Borg 1994)) and expand spatial coverage to test the hypothesis that 

marine vertebrates are the dominant source of estrogen in Massachusetts Bay.  
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3.3.12  Estrogens in coastal systems 

 Since all marine vertebrates excrete steroidal estrogens, it is not surprising to find 

background levels in seawater. Yet very few studies have measured marine estrogen 

concentrations, and until now, none had characterized conjugated, free, and halogenated 

forms at the same location. The most-commonly detected estrogen in other studies has 

been estrone (E1). E1 concentrations in Massachusetts Bay are generally in the same 

range as previous studies have found (Appendix A). The bounds of this range include a 

single water sample from the North Pacific that contained E1 concentrations of 52 pg L-1 

(Atkinson, Atkinson et al. 2003) and three Halifax Harbor samples containing 6600 ± 900 

pg L-1 E1 (Saravanabhavan, Helleur et al. 2009). Based on all previous data, E1 

concentrations in Massachusetts Bay seem to be typical for coastal areas, while 

concentrations of other estrogens (E2, EE2, E1-3S) are lower in Massachusetts Bay and 

Boston Harbor than elsewhere.  

 

3.3.13  Estrogenicity in Massachusetts Bay due to steroidal estrogens   

 We can determine the estrogenicity of Massachusetts Bay water at each site by 

multiplying the concentration of each estrogen by its particular binding affinity for an 

estrogen receptor (similar among vertebrates) and calculating a sum that is normalized to 

E2. Among the Massachusetts Bay samples we found that the sum total E2 equivalent 

concentration for the suite of estrogens measured here ranged between 0.1 – 0.4 ng L-1. 

These levels are near the threshold thought to cause harm to fish, and they still don’t 

consider any of the weakly estrogenic chemicals known to persist in sewage-impacted 

waters. Free estrogens contribute between 96 – 100 % of the estrogenicity due to 

steroidal estrogens measured in Massachusetts Bay waters; halogenated forms make up 

the remainder.  
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3.4  Conclusions 

 This study is the first of its kind to measure a large suite of steroidal estrogens in 

coastal seawater.  We find that estrogen concentrations near a large sewage outfall 

depend strongly on the degree of effluent dilution. We observe a wide range of estrogens 

in Massachusetts Bay, including free, conjugated and halogenated forms. Two of the 

dominant halogenated forms in DITP effluent – monoBrE2 and diClE2 – were also found 

in the receiving waters of Massachusetts Bay, but their fate was difficult to determine due 

to large uncertainties related to sampling and analytical limitations. On the other hand, 

there is strong evidence suggesting high ambient E1 concentrations from sources 

unrelated to sewage effluent, especially at the offshore station near Stellwagen Bank.  

 This work was carried out while the bay was well-mixed or weakly stratified, 

which represents a high-dilution scenario characteristic of fall, winter, and spring 

conditions. Stratified conditions in the summer are known to trap the rising DITP effluent 

plume at mid-depths and could result in higher estrogen concentrations. It is also likely 

that estrogen removal by biodegradation would be enhanced during the summer. 

Moreover, seasonal fish and whale aggregations have the potential to greatly influence 

local ambient estrogen concentrations and alter the relative balance between sewage-

derived and ambient estrogens. Therefore, investigating the spatial variability and 

seasonal dynamics of estrogens in coastal waters such as Massachusetts Bay should 

receive high priority for future study.  
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Figure 1. Sampling locations in Massachusetts Bay. The black line indicates the Deer 
Island Treatment Plant outfall diffuser line, and the red ellipse encloses PLM sites from 
MB-1210 and MB-1305. The PLM sites were located ~ 100 m down-current of the 
diffuser line at the time of sampling. Depth contours are given in meters, and the green 
area of the inset indicates the Stellwagen Bank Marine Sanctuary.  
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Figure 2. A selected reaction monitoring (SRM) chromatogram of Massachusetts Bay 
seawater spiked with 23 steroidal estrogens (500 pg L-1) highlights the range of 
instrumental responses (where normalization level, NL, refers to the signal size at a 
relative abundance of 100) and the presence of matrix interferences in certain SRM 
channels. Precursor/product transitions are shown to the right of each trace, and retention 
times are shown at the apex of each analyte peak.  
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Figure 3. Estrogen concentrations in Deer Island Treatment Plant final effluent from 
March-May 2012 (DI-1203-1205b; grab and 24-h composite samples; red), October 2012 
(DI-1210; grab samples; blue), and May 2013 (DI-1305; grab and 24-h composite 
samples; olive). The letters “nd” denote that no peaks were detected, and error bars show 
± 1 standard deviation. See Table SI-6 for values.  
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Figure 4. Estrogen concentrations in Massachusetts Bay at nearfield (PLM), down-
current (DS1 and DS2), up-current (US), and Boston Harbor (BH) stations in May 2013 
(MB-1305). Plot axis scales are identical to facilitate comparisons between stations. Note 
that the diClE2 at station PLM has been altered to show its full extent. The letters “nd” 
denote standard addition concentrations that were negative or could not be determined 
due to non-detects resulting in fewer than 2 spiking levels. Error bars show ± 1 standard 
deviation except for those that have been truncated since they extend into negative 
concentration space. See Table SI-7 for values.  
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Figure 5. Sewage tracers in Massachusetts Bay (filled diamonds) were used to model 
dilution between station PLM and the down-current stations (DS1 and DS2) in May 2013 
(MB-1305). Variability within the set of four PLM samples highlights the challenge of 
collecting water from equivalent locations within an effluent plume discharged into a 
dynamic tidal system. The variability in carbamazepine and caffeine between replicate 
samples at DS1 and DS2 is much smaller than the size of the symbols.  
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Figure 6. Estrogen concentrations at station PLM in Massachusetts Bay in October 2012 
(MB-1210) and May 2013 (MB-1305). Measured values are determined by the method of 
standard addition. Modeled values are calculated by 535x dilution of Deer Island effluent 
(DI-1210 or DI-1305) into station US water (MB-1305) based on dilution of the sewage 
tracer, carbamazepine. The letters “nd” denote that no peaks were detected, and error bars 
show propagated uncertainty as ± 1 standard deviation.  
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Figure 7. Measured estrogen concentrations (grey circles) are compared to modeled 
concentrations at stations DS1 and DS2 in Massachusetts Bay during May 2013 (MB-
1305). Modeled values are calculated by diluting PLM water with “clean” (zero tracer, 
zero estrogen) water according to carbamazepine (red circles) and caffeine (blue circles) 
tracer data (see Figure 5 and Table 2). Differences between modeled and measured values 
point to non-zero background estrogen levels and additional offshore estrogen sources. 
Error bars (measured values) show the propagated uncertainty (± 1 standard deviation) 
for the method of standard addition. Note the difference in vertical scales.  
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Figure SI-1. Depth profiles of temperature, salinity, dissolved oxygen, turbidity, and pH 
at the nearfield station PLM on 8 May 2013 (MB-1305a). Water samples for estrogen 
analysis were collected from 12 m depth at this station. Note the x-axis breaks and 
different horizontal scales.  
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Table 1. Sewage tracer UHPLC-MS/MS analytical method parameters. 
 

Analyte 
RT 

(min)  
precursor 

(m/z) 
product 

(m/z) 
Q =  

quant ion 
SRM 

collision E S-lens polarity 
caffeine 3.05 195 110 

 
22 91 pos 

  
195 138 Q 18 91 pos 

carbamazepine 7.03 237 179 
 

33 77 pos 

  
237 194 Q 18 77 pos 

carbamazepine-d10 6.95 247 187 Q 36 83 pos 

  
247 204 

 
21 83 pos 
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Table 2. Sewage tracer concentrations in Massachusetts Bay (MB-1305) and Deer Island 
Treatment Plant effluent (DI-1305). 
 

Sampling 
ID Site 

Carbamazepine 
(ng L-1) 

Caffeine 
(ng L-1) 

Salinity 
(PSU) 

MB-1305a PLM-0 0.69 3.9 31.61 
MB-1305a PLM-1 0.49 3.1 31.65 
MB-1305a PLM-2 2.5 9.7 31.52 
MB-1305a PLM-3 2.7 11 31.51 
MB-1305a PLM (AVG) 1.6 6.9 31.57 
MB-1305b DS1 0.21 2.3 31.59 
MB-1305b DS2 0.18 2.0 31.16 
MB-1305c US 1.1 12 31.74 
MB-1305c BH 0.6 4.8 31.31 
DI-1305 GRAB 249 863 0.8b 
DI-1305 COMPa 252 1720 0.8b 

 
a used as the wastewater end-member for purposes of dilution modeling 
b estimated based on DITP effluent chloride concentrations from March and May 2012 
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Table SI-1. Station locations during the October 2012 (MB-1210) and May 2013 (MB-
1305) field campaigns, and the location of the Deer Island Treatment Plant diffuser line. 
 

Cruise ID Station ID Latitude Longitude 
Sampling 
Depth (m) 

MB-1210 BKGD 42.3957 -70.7954 1 
MB-1210 PLM-0 42.3830 -70.7995 12 
MB-1210 PLM-1 42.3830 -70.7985 12 
MB-1210 PLM-2 42.3841 -70.7977 12 
MB-1210 PLM-3 42.3855 -70.7981 12 
MB-1305a PLM-0 42.3825 -70.8110 12 
MB-1305a PLM-1 42.3927 -70.7767 12 
MB-1305a PLM-2 42.3943 -70.7743 12 
MB-1305a PLM-3 42.3945 -70.7742 12 
MB-1305b DS1 42.3791 -70.7745 12 
MB-1305b DS2 42.3766 -70.6647 10 
MB-1305c US 42.4315 -70.8288 12 
MB-1305c BH 42.3296 -70.9734 5 

DITP Diffuser West 42.3843 -70.8038 34 
DITP Diffuser East 42.3889 -70.7801 34 
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Table SI-2. Estrogen UHPLC-MS/MS analytical method parameters. 
 

Analyte 
RT 

(min)  
Precursor 

(m/z) 
Product 

(m/z) 
Q =  

Quant ion 
SRM 

collision E S-lens Polarity 
E3-3G 1.06 463 113 

 
21 87 neg 

  
463 287 Q 42 87 neg 

E1-3G 2.86 445 113 Q 21 90 neg 

  
445 269 

 
40 90 neg 

E2-3G 3.07 447 113 
 

21 92 neg 

  
447 271 Q 42 92 neg 

EE2-3G 3.21 471 113 
 

22 78 neg 

  
471 295 Q 39 79 neg 

E1-3S 3.83 349 145 
 

55 79 neg 

  
349 269 Q 33 79 neg 

E2-3S 4.07 351 145 
 

56 79 neg 

  
351 271 Q 35 79 neg 

E1-3S-d4 3.82 353 147 Q 55 73 neg 

  
353 273 

 
33 73 neg 

EE2-3S 4.17 375 145 
 

58 85 neg 

  
375 295 Q 34 85 neg 

E3 5.15 287 143 
 

54 80 neg 

  
287 171 Q 37 80 neg 

monoClE3 6.72 321 35 Q 31 81 neg 

  
321 285 

 
30 81 neg 

E1 7.4 269 143 
 

55 50 neg 

  
269 145 Q 39 50 neg 

E2 7.64 271 145 
 

41 50 neg 

  
271 183 Q 42 50 neg 

E1-d4 7.38 273 145 
 

57 77 neg 

  
273 147 Q 39 77 neg 

EE2 7.55 295 145 Q 40 50 neg 

  
295 159 

 
36 50 neg 

diClE3 7.68 355 323 Q 39 78 neg 

  
357 325 

 
39 78 neg 

monoClE1 8.46 303 179 Q 40 50 neg 

  
303 267 

 
29 50 neg 

monoClEE2 8.7 329 293 
 

30 50 neg 

  
329 301 Q 26 50 neg 

monoBrE2 8.55 349 79 Q 39 88 neg 

  
351 81 

 
38 88 neg 

monoBrEE2 8.4 373 79 Q 38 87 neg 

  
375 81 

 
39 79 neg 

monoClE2 8.83 305 35 
 

27 76 neg 

  
305 269 Q 31 76 neg 

diClE1 9.14 337 213 Q 41 50 neg 

  
339 215 

 
40 50 neg 

diClE2 9.53 339 307 Q 38 85 neg 

  
341 309 

 
39 84 neg 

diClEE2 9.34 363 335 Q 29 83 neg 

  
365 337 

 
29 82 neg 

diBrE2 9.91 429 79 
 

44 50 neg 

  
429 81 Q 42 50 neg 

diBrEE2 9.69 453 79 Q 46 78 neg 

  
453 81 

 
45 78 neg 
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Table SI-3. The characteristics of Massachusetts Bay water (sampled for estrogen 
analysis) were determined by an on-board multi-probe sensor in October 2012 (MB-
1210) and May 2013 (MB-1305).  
 

Cruise ID Station ID 
Depth 

(m) 
Salinity 

(‰) 
Temperature 

 (°C) 

Dissolved 
Oxygen 
(mg L-1) pH 

MB-1210 BKGD 1 32.45 13.00 8.60 8.20 
MB-1210 PLM-0 12 32.51 13.05 8.72 8.24 
MB-1210 PLM-1 12 32.49 13.06 8.09 8.25 
MB-1210 PLM-2 12 32.49 13.05 11.25 8.24 
MB-1210 PLM-3 12 32.50 13.05 9.36 8.23 
MB-1305a PLM-0 12 31.61 9.63 10.70 8.06 
MB-1305a PLM-1 12 31.65 8.74 10.71 8.11 
MB-1305a PLM-2 12 31.52 8.26 10.54 8.08 
MB-1305a PLM-3 12 31.51 8.20 10.35 8.08 
MB-1305b DS1 12 31.59 9.53 10.36 8.16 
MB-1305b DS2 10 31.16  10.32  10.41 8.17 
MB-1305c US 12 31.74 9.84 10.24 7.98 
MB-1305c BH 5 31.31 11.20 9.21 8.00 
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Table SI-4. Nutrient measurements in Massachusetts Bay samples collected in October 
2012 (MB-1210) and May 2103 (MB-1305).  
 

Cruise ID Station ID 
Depth 

(m) 
NH4 
(µM) 

SiO4 
(µM) 

PO4 
(µM) 

NO2 + NO3 
(µM) 

MB-1210 BKGD 1 <0.05 3.2 0.2 0.2 
MB-1210 PLM-0 12 <0.05 2.7 0.2 0.1 
MB-1210 PLM-1 12 <0.05 2.4 0.1 0.1 
MB-1210 PLM-2 12 <0.05 2.3 0.1 <0.05 
MB-1210 PLM-3 12 <0.05 2.3 0.1 <0.05 
MB-1305a PLM-0 12 1.9 4.4 <0.05 <0.05 
MB-1305a PLM-1 12 <0.05 3.6 <0.05 <0.05 
MB-1305a PLM-2 12 9.9 4.3 0.1 0.8 
MB-1305a PLM-3 12 14.7 4.8 0.3 1.0 
MB-1305b DS1 12 <0.05 3.5 <0.05 <0.05 
MB-1305b DS2 10 <0.05 3.0 <0.05 <0.05 
MB-1305c US 12 3.0 2.7 <0.05 0.3 
MB-1305c BH 5 0.6 4.1 <0.05 0.5 

Mass Bay backgrounda  3.6    
DITP final effluenta  1860    
 
< indicates values below the detection limit 
a (Hunt, Mansfield et al. 2010) 
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Table SI-5. Measurements of organic carbon and nitrogen concentrations and isotopic 
ratios in Massachusetts Bay samples collected in October 2012 (MB-1210) and May 
2103 (MB-1305).  
 

Cruise ID Station ID 
Depth 

(m) 
DOC 

(mg L-1) 
POC 

(mg L-1) 
δ13CPOC

a 
(‰)b 

PON 
(µg L-1) 

δ15NPON
a 

(‰)c 
MB-1210 BKGD 1 n/d 0.33 -19.9 50.1 3.7 
MB-1210 PLM-0 12 n/d 0.26 -21.0 38.4 4.3 
MB-1210 PLM-1 12 n/d 0.31 -19.1 45.4 5.3 
MB-1210 PLM-2 12 n/d 0.40 -20.6 52.9 5.3 
MB-1210 PLM-3 12 n/d 0.38 -19.4 49.4 5.2 
MB-1305a PLM-0 12 1.3 0.21 -22.4 43.4 3.7 
MB-1305a PLM-1 12 1.7 0.11 -22.2 13.2 3.9 
MB-1305a PLM-2 12 1.4 0.08 -24.4 14.1 5.0 
MB-1305a PLM-3 12 1.5 0.04 -26.1 4.2 nd 
MB-1305b DS1 12 1.7 0.14 -22.5 28.4 1.3 
MB-1305b DS2 10 1.6 0.15 -24.4 26.6 4.7 
MB-1305c US 12 1.6 0.20 -21.2 41.6 4.1 
MB-1305c BH 5 1.5 0.18 -23.5 35.9 4.9 

Mass Bay backgroundd  1.2 0.17    
 
a measured by gas chromatography-isotope ratio mass spectrometry at the MBL Stable Isotope Laboratory 
b versus PDB 
c versus AIR 
d (Gustafsson, Long et al. 2001) 
n/d: not determined 
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Table SI-6. Estrogen concentrations in Deer Island Treatment Plant wastewater effluent 
(grab, 24-h composite) collected on 26 October 2012 (DI-1210) and 16 May 2013 (DI-
1305) to coincide with Massachusetts Bay samples (MB-1210 and MB-1305). See 
Chapter 2 (Table 1) for method limit thresholds (LC, LD, and LQ).  
 

 

 
a less than LC 
b less than LD 
c less than LQ 
n/d: indicates that no peak was found 
 

 (ng L-1 effluent) 

 
DI-1210 GRAB  DI-1305 GRAB  DI-1305 COMP 

Analyte AVG STDEV  AVG STDEV  AVG STDEV  
E3-3G n/d n/d  n/d n/d  n/d n/d  
E1-3G n/d n/d  12.2 1.80  10.3 1.63  
E2-3G n/d n/d  n/d n/d  n/d n/d  

EE2-3G 0.96 0.06  n/d n/d  n/d n/d  
E1-3S 0.78c 0.03  0.62c 0.19  1.27 0.05  
E2-3S 0.22b 0.03  0.23b 0.06  0.25b 0.07  

EE2-3S 0.26c 0.02  n/d n/d  n/d n/d  
E3 0.72 0.15  5.29 0.71  4.63 0.61  

monoClE3 0.32c 0.09  n/d n/d  n/d n/d  
E1 12.9 0.15  18.1 4.03  13.2 1.56  
E2 5.45 0.44  11.0 3.44  3.74 1.62  

EE2 n/d n/d  30.4 6.93  24.3 2.41  
diClE3 n/d n/d  n/d n/d  n/d n/d  

monoClE1 n/d n/d  n/d n/d  n/d n/d  
monoBrEE2 n/d n/d  n/d n/d  n/d n/d  
monoBrE2 n/d n/d  n/d n/d  n/d n/d  

monoClEE2 n/d n/d  n/d n/d  n/d n/d  
monoClE2 n/d n/d  n/d n/d  n/d n/d  

diClE1 n/d n/d  n/d n/d  n/d n/d  
diClEE2 n/d n/d  n/d n/d  n/d n/d  
diClE2 6.16c 0.87  35.6 11.5  26.0 4.28  

diBrEE2 6.17b 0.19  n/d n/d  n/d n/d  
diBrE2 n/d n/d  11.25 3.80  n/d n/d 
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RATIONALE: Steroids are potent hormones that are found in many environments. Yet, contributions from synthetic and
endogenous sources are largely uncharacterized. The goal of this study was to evaluate whether carbon isotopes could be
used to distinguish between synthetic and endogenous steroids in wastewater and other environmental matrices.
METHODS: Estrogens and progestogens were isolated from oral contraceptive pills using semi-preparative liquid
chromatography/diode array detection (LC/DAD). Compound purity was confirmed by gas chromatography/flame
ionization detection (GC/FID), gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS) and liquid chro-
matography/mass spectrometry using negative electrospray ionization (LC/ESI-MS). The 13C content was determined
by gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and 14C was measured by accelerator mass
spectrometry (AMS).
RESULTS: Synthetic estrogens and progestogens are 13C-depleted (d13Cestrogen= –30.0! 0.9%; d13Cprogestogen= –30.3! 2.6%)
compared with endogenous hormones (d13C~ –16 to –26%). The 14C content of the majority of synthetic hormones is consis-
tentwith synthesis fromC3 plant-based precursors, amendedwith ’fossil’ carbon in the case of EE2 and norethindrone acetate.
Exceptions are progestogens that contain an ethyl group at carbon position 13 and have entirely ’fossil’ 14C signatures.
CONCLUSIONS: Carbon isotope measurements have the potential to distinguish between synthetic and endogenous
hormones in the environment. Our results suggest that 13C could be used to discriminate endogenous from synthetic
estrogens in animal waste, wastewater effluent, and natural waters. In contrast, 13C and 14C together may prove useful
for tracking synthetic progestogens. Copyright © 2012 John Wiley & Sons, Ltd.

In the last two decades, thousands of studies have attempted
to characterize the concentration and toxicity of endocrine
disrupting chemicals (EDCs) in aquatic environments. Much
of this research has focused on steroidal hormones such
as estrogens, which are particularly potent EDCs, capable
of negatively affecting the normal functioning of aquatic
organisms and human populations at extremely low (sub
ng L–1) concentrations.[1,2]

Steroidal hormones include a variety of familiar compounds
(e.g., testosterone, progesterone, and estrogen) that are
naturally produced by all vertebrates to support growth and
development. Many of these so-called endogenous hormones
are also synthesized for use in contraceptive, veterinary,
scientific, and medical applications.[3]

Both endogenous and synthetic estrogens can enter surface
waters by a variety of pathways. Major sources include
wastewater treatment plant effluent, septic systems, and
livestock operations. Biodegradation is responsible for signif-
icant estrogen reductions in treatment plants, septic systems,

and natural waters. However, ~15% of the estrogen flux
typically escapes treatment and is discharged directly to
receiving waters.[4] The specific organisms and mechanisms
that support hormone degradation are largely unknown,
but they are clearly important for managing the risks asso-
ciated with EDC pollution in natural waters.

Although many studies have characterized estrogen concen-
trations in receiving waters, few have specifically characterized
the proportions derived from synthetic versus endogenous
sources. This information is valuable for evaluating and
apportioning ’problem’ sources, designing effective treatment
schemes, and better understanding the environmental fate
of synthetic and endogenous estrogens in terms of the
mechanisms and byproducts of biodegradation.

Synthetic pharmaceutical hormones often have unique che-
mical structures that improve their pharmacokinetic profiles.
For example, the active estrogen in most oral contraceptive
pills, 17a-ethynylestradiol (EE2), contains a characteristic ethy-
nyl group, which sets it apart from endogenous estrogens,
extends its half-life in the body, and facilitates its detection in
the environment by chemical means (e.g., GC/MS or LC/MS).
In other cases, synthetic hormones have identical chemical
structures to their endogenous counterparts, making chemical
discrimination difficult. For example, some synthetic estrogens
administered to cattle or used in human hormone replacement
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therapy are chemically identical to endogenous estrogens. For-
tunately, natural abundance isotope measurements can help
distinguish between the two. In fact, stable carbon isotopes
(12C and 13C) have already been used to characterize the prove-
nance of certain chemicals for a variety of purposes, such as ver-
ifying product labels, protecting against pharmaceutical fraud,
and detecting performance enhancing substance abuse.[5–7]

This last application takes advantage of the fact that
endogenous steroids typically contain significantly more 13C
than synthetic steroids.[8–11] The present study was designed
to test whether synthetic estrogens and progestogens, such
as those found in oral contraceptive pills and commercial
preparations, are similarly depleted in 13C.
We also hypothesized that coupled radiocarbon (14C)

measurements could improve our ability to characterize the
source signatures of synthetic hormones. Radiocarbon
(5730 years half-life) is a powerful tracer of ’fossil’ carbon since
petroleum and natural gas no longer contain 14C while recently
fixed CO2 contains much higher levels of 14C. This distinction
has been useful in a variety of applications, including character-
izing the fate of fossil fuel CO2 and discriminating between
natural and synthetic chemicals in the environment.
Here we present a method for isolating the steroidal

hormones from oral contraceptive pills and report results
for compound-specific 13C and 14C measurements. The goal
of this study was to characterize the 13C and 14C signature
of numerous synthetic estrogens and progestogens (Fig. 1)

in order to evaluate whether carbon isotopes could be used
to help elucidate the sources of these hormones in complex
environmental systems.

EXPERIMENTAL

A semi-preparative liquid chromatographicmethodwas devel-
oped to isolate pure EE2 and progestogens from contraceptive
pills for carbon isotope (13C and 14C) analysis (Fig. 2). Nine
types of oral contraceptive pills and seven commercially avail-
able authentic steroid hormone standards were investigated.
For the purposes of this study, we assume that these standards
are representative of mass-produced synthetic estrogens and
progestogens used in medical and veterinary applications.
Standards were purchased from Sigma-Aldrich (St. Louis,
MO, USA) (estrone (E1),≥99%; 17b-estradiol (E2),≥98%; estriol
(E3), 98%; 17a-ethynylestradiol (EE2), ≥98%; progesterone,
≥99%; desogestrel, 99.7%; levonorgestrel, ≥99%). All solvents
were Chromasolv grade from Sigma-Aldrich, and all glassware
and filters were baked at 450 !C for 5 h prior to use.

Pill preparation

Oral contraceptive pills were crushed with an agate
mortar and pestle, extracted by sonication in 15 mL methanol
for 25 min, and filtered through a GF/F filter (Whatman,
Maidstone, UK). The filtrate was reduced to dryness under
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Figure 1. Chemical structures of (a) estrogens, (b) progestogens, and (c) steroidal precursors. Generic steroid
carbon position numbers are shown on the structure of b-sitosterol.

D. R. Griffith et al.

wileyonlinelibrary.com/journal/rcm Copyright © 2012 John Wiley & Sons, Ltd. Rapid Commun. Mass Spectrom. 2012, 26, 2619–2626



 143 

vacuum (300 mbar; 60 !C) then dissolved in dichloromethane
(10 mL), washed with MilliQ water (Millipore, Billerica, MA,
USA; 3" 5 mL; pH 5), and dried over baked anhydrous
Na2SO4 (450 !C; 5 h). This extract was then reduced to
dryness under N2 (40 !C) and finally reconstituted in 500 mL
70:30 methanol/MilliQ water.
Liquid chromatography, coupled to mass spectrometry

(LC/MS) and UV-visible diode array detection (LC/DAD),
was used to confirm the identities of steroidal hormones in
each extract. The LC/MS instrument (6130 single quadrupole
mass spectrometer; Agilent, Santa Clara, CA, USA) was
operated in negative electrospray ionization (ESI), full scan
(m/z 120–400) mode. The LC/DAD instrument (Agilent 1260)
monitored three wavelengths (210, 254, and 280 nm) and
collected full UV-visible (210–400 nm) spectra at the base and
apex of each chromatographic peak.

Fraction collection

For compound isolation, the LC/DAD system was config-
ured to collect fractions corresponding to the individual
EE2 and progestogen peaks. Separation was achieved on a
Hypersil GOLD C18 aQ column (Thermo Fisher Scientific,
Waltham, MA, USA; 5 mm, 250" 4.6 mm) using gradient

elution (70–100% methanol; 2% min–1) at a flow rate of
1.5 mL min–1 and a column temperature of 25 !C. In all cases
EE2 eluted first (4.55–5.10 min), followed by the progesto-
gens: levonorgestrel (5.40–5.90 min), norethindrone acetate
(6.35–6.95 min), norgestimate ’a’ (8.35–8.90 min), norgestimate
’b’ (8.90–9.45 min), and desogestrel (14.00–14.50 min). Fractions
were collected from two to four individual 100 mL injections and
then they were combined and stored at –20 !C. Clean solvent
(70:30 methanol/MilliQ water) was also injected (11"100 mL)
so that corresponding fractions could be used to correct for
organic interferences (’column bleed’) present in the mobile
phase and released from the column during each time interval.

Fraction cleanup

All sample and column bleed fractions were reduced to
dryness under N2 (40 !C) and transferred to a 14C-clean
laminar flow hood for clean up on 250 mg of fully activated
(450 !C; 8 h) silica gel (100–200 mesh). After sample loading,
hexane (2 mL), ethyl acetate (3 mL), and methanol (2 mL) were
successively passed through the silica gel column. All the
compounds of interest eluted in the ethyl acetate fraction, from
which a small aliquot (17 mL or ~0.5%)was removed to confirm
fraction purity byGCwith flame ionization detection (FID) and
GC coupled with time-of-flight mass spectrometry (TOF-MS).
Methanol fractions were also analyzed to confirm that target
compounds eluted completely in the ethyl acetate fraction.

Fraction purity and blank assessment

In addition to the LC/DAD and LC/MS analyses mentioned
above, GC/FID and GC/TOF-MS analyses confirmed the
identity and purity of each ethyl acetate fraction. Moreover,
a blank ethyl acetate fraction collected from the silica gel cleanup
step and all the column bleed fractions were indistinguishable
from a GC blank injection. Non-active sugar pills included
in oral contraceptive pill packaging were processed alongside
sample pills and this confirmed that cross-contamination was
not a problem during pill preparation. The six column bleed
fractions were subsequently quantified and analyzed for 14C.

Quantification and combustion

The remainders of each ethyl acetate fraction were trans-
ferred to a pre-baked (850 !C; 5 h) quartz tube and blown
dry under N2 (40 !C). Pre-baked CuO (850 !C; 5 h) was
added and each tube was evacuated and sealed on a vacuum
line, then baked at 850 !C for 5 h. The resulting CO2 was
quantified manometrically and split into three aliquots. One
aliquot was measured for stable carbon isotopic composition
(d13C value) on a VG PRISM series II mass spectrometer (VG
Isotech, defunct) at the National Ocean Sciences Accelerator
Mass Spectrometry (NOSAMS) facility at Woods Hole Oceano-
graphic Institution (Woods Hole, MA, USA). The second
aliquot was used for 14C analysis on the compact accelerator
mass spectrometer MICADAS equipped with a gas ion source
for small samples[12–15] at the Laboratory for Ion Beam
Physics at ETH (Zürich, Switzerland). The third aliquot was
archived.

Small amounts (~1 mg) of authentic estrogen and progesto-
gen standards were also submitted to NOSAMS for 13C and
14C analysis without preprocessing. All radiocarbon data are
reported according to accepted conventions.[16,17]

Oral contraceptive pill
(powder with mortar and pestle)

Sonicate in MeOH (20 min)
Filter (0.7 m GF/F)

Liquid-liquid extraction
3 x 5 mL H2O (pH 5)

Remove residual H2O from DCM layer (Na2SO4)

LC/DAD
fraction collection

LC/ESI-MS
purity

Multivap blowdown (60 oC, 300 mbar)
Reconstitute in 10 mL DCM

insoluble material

aqueous layer

N2 blowdown (40 oC)
Reconstitute in 500 L 70:30 MeOH/H2O 

LC/DAD
retention time

GC-FID
purity combust to CO2 and

measure 14C and 13C

Si gel clean up
(EtOAc fraction)

GC/TOF-MS
purity

Figure 2. Flow chart for isolating, confirming purity, and
analyzing the carbon isotopic composition of estrogens and
progestogens in oral contraceptive pills.
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Column bleed corrections

By the end of sample processing, the column bleed fraction
corresponding to the EE2 time window contained 0.9 mg
carbon per LC run, or 3.7% of a typical EE2 sample. The 14C
content of this fraction (Δ14C= –947! 8%) was used to correct
sample EE2 Δ14C values for contributions of carbon carried by
the LC mobile phase. The progestogen samples were corrected
similarly using the appropriate column bleed fractions, which
contained ~0.5 mg carbon (Δ14C= –825! 27 %) per LC run, or
no more than 1.5% of the smallest progestogen sample.
The reported Δ14C values were also corrected for instrumen-

tal blanks and normalized using the oxalic acid standard
OX-II; reported errors represent propagated errors from all
corrections. Due to there being insufficient carbon in the
column bleed fractions, the d13C values (all referenced to
VPDB) were only corrected for instrumental blanks.

RESULTS AND DISCUSSION

Estrogens

The 14C content of EE2 isolated from oral contraceptive pills
(Δ14C= –189! 18 %; Table 1, Fig. 3) suggests that EE2 is
synthesized from primarily plant-based steroidal starting
materials amended with small amounts of fossil (natural gas
or petrochemical) carbon. The mean 13C content of EE2

(d13C= –29.4! 0.3%; Table 1, Fig. 3) is consistent with known
steroidal precursors (b-sitosterol, stigmasterol, diosgenin;
Fig. 1) found in C3 plants such as soybean (Glycine max) and
wild yam (Discorea spp.).[18–21]

It is possible to quantify the fraction of EE2 carbon derived
from fossil (ffossil) and modern (fmodern) sources using the
following equations:

ffossil þ fmodern ¼ 1 (1)

Δ14Cmeasured ¼ ffossil Δ14Cfossil
! "

þ fmodern Δ14Cmodern
! "

(2)

where we assume that Δ14Cfossil = –1000 % and Δ14Cmodern =
50 %. Measured Δ14C values indicate that, on average, 23%
(or 4.5 out of 20) of the carbon atoms in EE2 are derived from
fossil sources. If we assume that both ethynyl carbon atoms in
EE2 are petrochemical, the plant-based precursor compounds
must also contain some fossil carbon atoms. These fossil
carbons are probably derived from CO2 amendments to
commercial greenhouses from natural gas heating exhaust[22,23]

and/or from plants grown in areas heavily impacted by fossil
fuel emissions.[24] It is interesting to note that Eglinton et al.[25]

found a similar 14C content (Δ14C= –113 %) in a sample of
Crassula argentea grown in a greenhouse heated by natural gas.

In contrast, synthetic estrogens that lack an ethynyl group
(such as E1, E2, and E3) exhibit an entirely modern 14C
signature (Fig. 3), implying that fossil CO2 amendment is
not universal in steroid precursor plant cultivation and that,
by itself, 14C cannot distinguish between synthetic estrogens
(made for pharmaceutical, scientific, and veterinary applica-
tions) and their endogenous counterparts derived from
dietary (and primarily modern) carbon.

In this case, 13C seems to hold greater promise for discri-
minating between synthetic and natural sources since
endogenous steroids contain significantly more 13C than
the synthetic estrogens (d13C= –30.0! 0.9 %; Table 1, Fig. 3)
analyzed in this study. In general, the synthetic steroids
are more 13C-depleted (d13C~ –27 to –34 %) than their
endogenous counterparts (d13C~ –16 to –26 %) because
synthetic steroid precursors are typically derived from C3

plants whereas endogenous steroids reflect dietary mixtures
of C3 (e.g., wheat, soybean, fruit, vegetables) and C4 plants
(e.g., corn, sugarcane).[8–11,26,27]

Table 1. Estrogen-specific carbon isotope values for oral contraceptive pills and authentic standards

Sample Compound
Ethynyl group
at C-17 position¥

d13Ca

(%)
Δ14C$

(%) Lab No.

1EE2 EE2 Y –29.7 –199! 12 ETH-43740
2EE2 EE2 Y –29.2 –173! 11 ETH-43741
3EE2 EE2 Y –29.6 –205! 14 ETH-43742
4EE2 EE2 Y –28.7 –209! 23 ETH-43743
5EE2 EE2 Y –29.4 –159! 13 ETH-43756
6EE2 EE2 Y –29.5 –186! 14 ETH-43758
7EE2 EE2 Y –29.5 –193! 13 ETH-43759

stdEE2p
† EE2 Y –30.7 –170! 13 ETH-43754

stdEE2
} EE2 Y –31.7 –47! 3 OS-92452

stdE1
} E1 N –30.9 48! 4 OS-92449

stdE2
} E2 N –30.8 47! 5 OS-92450

stdE3
} E3 N –30.5 50! 3 OS-92451

Average –30.0! 0.9 –116! 108
¥See Fig. 1 for steroid carbon position numbering.
aInstrumental precision for d13C measurements is! 0.1%.
$Δ14C errors (! 1 SD) reflect propagated instrumental errors and column bleed corrections.
†Authentic standard processed alongside oral contraceptive pill samples.
}Authentic standards analyzed at NOSAMS without pre-processing; Δ14C errors reflect only instrumental errors; d13C values
were measured on a VG Optima SIRMS instrument using a dual inlet source configuration.
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The unique 13C signature of synthetic steroids is currently
used to test athletes for doping with synthetic androgens[28]

and to detect the treatment of cattle with synthetic estrogens.[29]

Our results suggest that 13C could also be used to discriminate
endogenous from synthetic estrogens in animal waste, waste-
water effluent, and natural waters.
As synthetic estrogens (including E1, E2, E3, and EE2) are

made from mostly plant-derived precursors this highlights
an important distinction between ’synthetic’ and ’anthropo-
genic’ chemicals;[30] that is, if synthetic chemicals with natural
counterparts (such as steroids) are made from plants, the
typical isotope approaches that rely on 14C may fail to detect
some synthetic chemicals. This calls into question approaches
that use fossil carbon content (14C) alone as a proxy for
anthropogenic inputs to the environment. Therefore, 14C data
should be regarded as providing a minimum estimate of
contributions from synthetic sources.

Progestogens

Like the estrogens, synthetic progestogens contain significantly
less 13C (d13C= –30.3! 2.6%; Table 2, Fig. 3) than endogenous
steroids. In contrast, however, most progestogens are com-
posed entirely of fossil carbon (Δ14C= –994! 11 %; Table 2,
Fig. 3). The two exceptions are norethindrone acetate
(Δ14C= –136%) and progesterone (Δ14C=54%). Like the estro-
gens, these two progestogens have 14C contents that suggest
they were synthesized from plant-derived steroidal precursors.
Notably, norethindrone acetate and progesterone also share a
common structural feature – a methyl group at the chiral C-13
position – with both estrogens and steroidal precursor com-
pounds (see Fig. 1).

The measured Δ14C of norethindrone acetate indicates that
4 of its 22 carbon atoms are fossil-derived (as per Eqns. (1)
and (2)). It is therefore likely that the ethynyl and acetyl
groups are composed of fossil carbon while the steroid back-
bone derives from modern C3 plant precursors. However, the
measured d13C value of norethindrone acetate (–36.4 %)
would suggest that these fossil carbon atoms derive from
sources with anomalously low 13C content. Since 14C con-
strains the fraction of carbon from each source (ffossil = 0.18;
fsteroid backbone = 0.82), we can use the 13C analogue of Eqn. (2)
to determine a range of d13C values for the fossil carbon
component of norethindrone acetate:

d13Cmeasured ¼ ffossil d13Cfossil
! "

þfsteroid backbone d13Csteroid backbone
! "

(3)

If we assume that the steroid backbone contains carbon with
typical synthetic steroid d13C values (–27 to –34 %), the
calculated range of d13Cfossil (–79 to –47 %) suggests that the
fossil (i.e., ethynyl and acetyl) carbon in norethindrone acetate
is probably derived from either biogenic methane, which
typically has very low d13C values (–110 to –50 %),[31] or as
the result of a strongly fractionating synthetic reaction.

The progestogens that have entirely fossil 14C signatures
all share an ethyl group at C-13. Indeed, total synthesis
from petrochemical precursors appears to be the preferred
synthetic pathway for progestogens with this structural
similarity.[19,20] These results are also consistent with
reports that many 19-norsteroids (such as the progestogens
found in oral contraceptive pills) are currently synthesized
from non-steroidal petrochemical precursors.[32] Therefore,
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Figure 3. Characteristic carbon isotope values for a variety of estrogens (orange and brown symbols) and progesto-
gens (blue and purple symbols) isolated from oral contraceptive pills (circles) or purchased as authentic standards
(diamonds). Average end-member isotope values are shown in grey. These include bulk C3 and C4 plant tissue,[50,51]
soybean fatty acids,[52] inferred soybean b-sitosterol,[52,53] bulk yam tissue,[21] endogenous steroids,[10] atmospheric
CO2,[54] greenhouse-grown C. argentea,[25] petroleum,[55] and biogenic methane.[31] Data points are labeled with sample
numbers, and subscripts indicate the specific estrogen or progestogen according to Tables 1 and 2. Note that C3 and C4
plants, petroleum, and methane have larger natural d13C ranges than shown.[56]
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together, 13C and 14C may prove useful for tracking this
group of synthetic progestogens in human and animal urine,
wastewaters, and a range of aquatic systems.

Environmental forensics

In complex environments (e.g., soils and natural waters),
compound-specific isotope measurements have the potential
to provide information about the sources and environmental
transformations of contaminants, provided that the source
signatures are sufficiently unique and the fractionation
factors are known.[33,34] However, it would be difficult to
investigate steroidal hormone transformation mechanisms
using 13C because the fractionation of isotopes at reactive
bonds would be ’diluted’ by the non-reactive carbon atoms
in these large molecules.[33] Nevertheless, in cases where
the isotope signatures of hormone sources are sufficiently
distinct, it should be possible to apportion source inputs
using compound-specific isotope measurements.
Moreover, dual (or multiple) isotope analyses can provide

additional constraints on source signatures. When combined
with 13C measurements, compound-specific 14C data typically
provide an added level of specificity[35] and are a particularly
powerful tracer of ’fossil’ carbon.[36] However, in the case of
plant-based synthetic chemicals such as estrogens and some
progestogens, where the13C content is the strongest indicator
of synthetic origin, the considerable expense and effort involved
in 14C measurements would not be justified. This is fortuitous
because 13C analyses require ~100-fold less material, which
makes steroid-specific isotope measurements feasible even in
complex environmental matrices.
Given typical environmental estrogen concentrations,[37–44]

we estimate that compound-specific 13C analysis of
individual estrogens would require the extraction of ~1–5 L
of wastewater effluent, ~100–200 g of sewage-impacted coastal
sediments, and ~200–300 L of sewage-impacted coastal waters.
By pooling the free, conjugated, and halogenated forms of
estrogens, it should be possible to further reduce sample sizes
by a factor of two to five.[45,46]

Taken together, carbon isotopes have proven to be a
valuable tool for distinguishing between natural and syn-
thetic chlorinated organic compounds in the ocean,[30,47]

apportioning sources of combustion-derived polycyclic
aromatic hydrocarbons,[48,49] and detecting hormone abuse
in human athletes[7] and cattle operations.[29] The different
d13C signatures of synthetic and endogenous steroidal hor-
mones open up the possibility for characterizing steroid
sources and fate in wastewater treatment plants, rivers, lakes,
and the coastal ocean.

CONCLUSIONS

We found that synthetic estrogens and progestogens in oral
contraceptive pills and commercially synthesized standards
contain significantly less 13C than their endogenous coun-
terparts. The majority of synthetic hormones appear to be
made from C3 plant-based precursors, amended with ~20%
fossil carbon in the case of EE2 and norethindrone acetate.
Exceptions are progestogens that contain an ethyl group at
the C-13 position and are entirely synthesized from fossil pre-
cursors. Thus, there is potential to use carbon isotopes to quan-
tify inputs of synthetic hormones to the environment, which
would improve our understanding of hormone sources and
fates and inform the design of effective mitigation solutions.

Acknowledgements
We thank Xiaojuan Feng, Valier Galy, Matthew Makou,
Daniel Montluçon, and the staff at the Laboratory for Ion
Beam Physics at ETH-Zürich and at the National Ocean
Sciences Accelerator Mass Spectrometry (NOSAMS) facility
at Woods Hole Oceanographic Institution for laboratory
and analytical assistance. This work was supported by the
Martin Family Society of Fellows for Sustainability and by
a U.S. Environmental Protection Agency STAR graduate
fellowship (FP-91713401).

Table 2. Progestogen-specific carbon isotope values for oral contraceptive pills and authentic standards

Sample* Compound
Substituent at
C-13 position¥

d13Ca

(%)
Δ14C!

(%) Lab No.

1NL levonorgesetrel ethyl –27.7 –998" 4 ETH-43755
3NA norethindrone acetate methyl –36.4 –136" 12 ETH-43750
4DS desogestrel ethyl –31.3 –969" 7 ETH-43757
6NL levonorgestrel ethyl –27.4 –1001" 2† ETH-43751
7NTa norgestimate “a” ethyl –29.9 –994" 5 ETH-43752
7NTb norgestimate “b” ethyl –29.8 –999" 2 ETH-43753
stdNL

} levonorgestrel ethyl –29.9 –996" 1 OS-92455
stdPR

} progesterone methyl –31.2 54" 4 OS-92453
stdDS

} desogestrel ethyl –29.5 –999" 1 OS-92454
Average –30.3" 2.6 –782" 423

*Samples 2 and 5 not measured.
¥See Fig. 1 for steroid carbon position numbering.
aInstrumental precision for d13C measurements is" 0.1%.
!Δ14C errors (" 1 SD) reflect propagated instrumental errors and column bleed corrections.
†calculated assuming age of 50 000 years BP.
}Authentic standards analyzed at NOSAMS without pre-processing; Δ14C errors reflect only instrumental errors; d13C values
were measured on a VG Optima SIRMS instrument using a dual inlet source configuration.
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5.1  Summary of major findings 

As environmental chemists, we seek a better understanding of the processes that 

shape chemical distributions and interactions in the real world. An interesting and 

important component of this search is characterizing how human activities influence 

chemical behavior and ecosystem health.  

The vast quantity of hormones produced and released to the environment by 

humans have been cause for concern for several decades. Steroidal hormones are 

extremely potent chemicals that are known to disrupt the normal development of fish and 

humans, alike. The fact that fish, whales, and other marine vertebrates live in a mixture of 

their own excreted hormones raises interesting questions about these organisms’ 

strategies for dealing with endocrine disrupting chemicals in their surroundings. These 

are key questions since our understanding of the fate of hormones and synthetic 

chemicals in the environment lags significantly behind the race to design and produce 

new ones.  

This work has focused on steroidal estrogens, a class of hormone produced by 

every human and ubiquitous in the sewage we discharge to rivers, lakes, and oceans. We 

have shown that treated wastewater effluent contains a much wider range of estrogens 

than was previously understood. These include conjugated estrogens, free estrogens, and 

halogenated estrogens, which were found in every effluent sample collected over the 

course of 14 months.  

By opening this window on estrogen forms, we are now better situated to 

characterize the processes that determine estrogen distributions and follow their fate in 

complex environments such as rivers and the coastal ocean. 

Estrogen concentrations near the sewage outfall in Massachusetts Bay are 

determined both by estrogen levels in sewage and by the extent of dilution, which is 

strongly influenced by the volume and residence time of water in the bay.  

Further away from the sewage outfall, we expected to see estrogen levels decrease 

due to additional dilution and biological degradation. Instead, we observed higher 

concentrations of the free estrogen, estrone (E1), which suggests that background E1 
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levels may, in fact, be higher than E1 levels at the sewage outfall due to sources from 

extant fish and whale populations.  

Conjugated and halogenated estrogen derivatives are present in all Massachusetts 

Bay samples, but our ability to describe their fate is currently hampered by the size of 

propagated measurement uncertainties. It may be possible to overcome these limitations 

by additional clean-up steps and/or higher standard spiking levels.  

Using estrogen potency data from other studies, we determined that net 

estrogenicity in Massachusetts Bay water due to all 23 steroidal estrogens measured here 

was equivalent to 0.1 – 0.5 ng of estradiol (E2) in every liter of seawater. In isolation, 

these levels are at the known threshold for disrupting fish development. If the myriad and 

abundant “weak” estrogens (nonylphenol, bisphenol A, etc…) are considered, there may 

be heightened cause for concern. Moreover, in sewage-impacted waters, mixtures of 

pharmaceuticals or contaminants may have synergistic effects on organism and 

ecosystem health. Alternatively, populations in Massachusetts Bay may be doing just 

fine, having adapted mechanisms for avoiding or managing the onslaught of 

contaminants.  

Still, our potency calculations do not consider seasonal effects (summertime 

concentrations), bioaccumulation of hydrophobic halogenated estrogens, net estrogenicity 

including weakly estrogenic chemicals, or synergistic effects with the many other 

chemicals and pharmaceuticals in sewage-impacted coastal waters.  

 If we deem that estrogens or other hormones present an unacceptable threat to 

human or ecosystem health, it will be necessary to target the root cause or combination of 

factors at work. In many cases, natural abundance isotope measurements can help us 

tease apart sources in complex environments. We have taken an important first step by 

showing that carbon isotopes, particularly 13C, may be used to apportion sources of 

estrogens from natural and synthetic sources. This will help us design effective and 

efficient methods for reducing concentrations in problem systems. Moreover, the unique 
13C signature of synthetic estrogens may further illuminate estrogen sources in systems 
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like Massachusetts Bay, where we have seen evidence for non-sewage-derived E1 

sources.  

 

5.2  Future directions 

5.2.1  Seasonal and background estrogen sources in Massachusetts Bay 

 Thus far, our study of estrogens in Massachusetts Bay has been limited to seasons 

when water column stratification was weak. Under these conditions, the Deer Island 

effluent plume is relatively well-mixed vertically. In contrast, a vertically stratified water 

column during the summer traps the plume at mid-depths, thus reducing dilution, and 

increasing the concentration of sewage-derived estrogens. At the same time, it is also 

possible that summertime temperature and sunlight conditions may alter biodegradation 

and photodegradation rates. Understanding the interplay between the competing 

processes of dilution and degradation in the summer would help us better model annual 

estrogen dynamics and shed light on background levels.   

 Our work exposes a need to understand the background levels of estrogen in 

Massachusetts Bay, the Gulf of Maine, and the open ocean. Additional sampling 

campaigns should be designed to characterize background marine estrogen 

concentrations. This information would help scientists and managers better understand 

the relative contributions of sewage and background sources to coastal areas influenced 

by both.  

 

5.2.2  Improving tools for predicting environmental concentrations 

 It is impossible to comprehensively characterize every system that receives 

wastewater effluent. Therefore, we should improve our ability to predict environmental 

concentrations using simple models that consider loading, dilution, and degradation. 

Unfortunately, we currently lack fundamental information about the rate at which 

sunlight and/or microbial communities degrade estrogens in natural waters. Existing 

studies have been conducted with free estrogens spiked into natural waters at 

unrealistically high concentrations. Therefore, it should be a priority to apply our 



 154 

analytical method to characterizing biodegradation and photochemical degradation rate 

constants for conjugated, free, and halogenated estrogens at environmentally relevant (pg 

L-1) concentrations.  

 The results of these experiments could be used to characterize estrogen fate in any 

coastal area using information about effluent estrogen loads and some knowledge of the 

hydrodynamics and biogeochemical properties of the water body.  

 

5.2.3  Bioaccumulation of halogenated forms 

The speciation of estrogens between free, conjugated, and chlorinated forms has 

important implications for their bioaccumulation potential and, thus, the risk to human 

health via consumption of fish and bivalves. Given the presence of halogenated estrogens 

in sewage effluent and coastal water, it should be high priority to investigate the degree to 

which the more hydrophobic halogenated forms sorb to sediments and/or bioaccumulate. 

Studies that measured halogenated estrogens in bivalve, fish, and whale tissue would 

require new extraction methods, but there is a large body of literature that could guide 

this work. In addition, estrogens could be isolated from tissue extracts and analyzed for 

carbon isotopic composition to identify likely sources.  

 

5.2.4  Developing approaches that link specific compounds to net effects 

Compound-specific analysis by tandem mass spectrometry allows us to study the 

environmental fate of individual estrogens, but these analyses can be time consuming, 

difficult, and expensive. Another common approach measures the estrogenic impact of a 

sample of interest on an organism by proxy (Pinto, Garritano et al. 2005; Campbell, 

Borglin et al. 2006). Such studies measure an integrated estrogenic response, triggered by 

both estrogens themselves and other chemicals that mimic estrogens.  

Unfortunately, many bioassay-based screening methods suffer from a lack of 

specificity regarding specific chemical concentrations and mechanisms of action. This 

leaves us without the ability to utilize the power of chemical fate models for informing 

intelligent regulations and cost-effective source controls. However, coupled 
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measurements of specific estrogens and bioassays can provide important additional 

information. For example, if the total E2 equivalent estrogen activity and the integrated 

bioassay estrogenicity were of similar magnitude, then this would implicate steroidal 

estrogens were the main contributors. On the other hand, a mismatch between the two 

could highlight the importance of weak (but more abundant) estrogenic chemicals such as 

nonylphenol or bisphenol A. For example, screening methods indicate that Deer Island 

Treatment Plant effluent has an E2 equivalent activity of 936 ng L-1 (Siegener 2005), 

which is much larger than the activity (11 – 50 ng L-1) calculated based on the suite of 

estrogens measured in this study.  

Thus, it is important to integrate compound-specific and bioassay work so that we 

can begin to understand the relative contribution of steroidal estrogens to the total 

estrogenicity of environmental samples.  
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Appendix A: Literature survey of coastal estrogen levels 
 
Table A-1. Summary of coastal ocean estrogen concentrations 

  E1 E2 E3 EE2 E1-3S  
Location (ng Lw

-1) (ng Lw
-1) (ng Lw

-1) (ng Lw
-1) (ng Lw

-1) Reference 
Kaneohe Bay, HI¥ 0.04-0.6     [1] 

N. Pacific¥ 0.052     [2] 
Biosphere 2 ocean¥ 0.066     [2] 

Fr. Polynesia¥ 0.17     [2] 
S. Molokai¥ 0.12     [2] 

Maui (n=70)¥ 0.16     [2] 
Oahu¥ 0.58     [2] 

Florida Keys¥ 0.26     [2] 
Tinian Is.¥ 0.31     [2] 
Tern Is.¥ 0.35     [2] 

Guam (resorts)¥ 0.48-0.71     [2] 
Moorea (resort)¥ 0.61     [2] 

Key Largo Shore¥ 0.85     [2] 
Maalaea Bay¥ 0.69     [2] 
Big Pine Key¥ 0.66     [2] 

Key West¥  0.81     [2] 
Rehoboth Bay¥  1.87     [2] 

Key West Harbor¥ 1.58     [2] 
Boston Harbor‡    <74  [3] 

Jamaica Bay, NY‡ 0.07-2.52§ 0.05-0.53§    [4] 
Tokyo Bay‡ 0.05-3.60§ <0.07-0.59§   <0.03-0.05§ [5] 

LA outfall site‡ 0.6§ 0.3§    [6] 
San Diego outfall‡ <0.03§ 0.3§    [6] 
Orange Co. outfall‡  <0.03§ 0.45§    [6] 
Southern CA Bight‡ <0.03§ 0.16§    [6] 

Halifax Harbor‡ 4.0-6.6 <0.10-0.57  <0.14; 0.21§  [7, 8] 
St. Johns Harbor‡ 1.4-1.5 <0.5-1.8  <1.2  [8] 
Sydney outfall‡ 0.16-1.17§ 0.22-2.48§  <0.05-0.5§  [9] 

Baltic Sea‡ 0.10-0.53 <0.30 <1.0 <0.45-17.9  [10, 11] 
Cape Cod ponds‡ ND-4.6 <2.0-2.2    [12] 

W. Australia coral¥   0.55-4.2    [13] 
Acushnet estuary‡ 0.78-1.2 0.56-0.83  3.01-4.57  [14] 

Biobio, Chile‡ 0.06-14.5§ 0.06-16.8§ 0.04-53§ 4.18-48.14§  [15] 
Xiamen Bay, China‡ 1.1-7.4§ 1.0-2.4§  <1.3-2.2§  [16] 
Massachusetts Bay‡ 0.09-0.52 0.03-0.09  0.02-0.09 0.02-0.07 this study 

Boston Harbor‡ 0.44 0.07  0.0004 0.063 this study 
 
¥ method: radioimmunoassay or bioassay 
‡ method: LC-MS, GC-MS, or LC-MS/MS 
§concentration reported for sediments in ng g-1 
see also: [17], [18], [19], [20], and [21] 
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Appendix B: Solid phase extraction disk break-through experiments 
 
Figure B-1. Percent recovery of three estrogens (E2-3S, E2, and monoBrE2) from water 
using solid phase extraction disks (47 mm; Empore; 3M, St. Paul, MN, USA) varies as a 
function of sample volume, pH, flow rate, disk type, elution solvent, ionic strength, and 
cation identity. The symbol “nf” indicates cases where estrogen was not found on the 
backup disk (placed below the main disk), which suggests that low recoveries from 
carbon disks are related to inefficient elution rather than break-though. See Chapter 2 for 
methodological details.  
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Pyrene sorption into cellular lipids and onto laboratory 
plastics 
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Appendix C: Pyrene sorption into cellular lipids and onto laboratory plastics 

 

Bioavailability and bioassay-derived estrogenicity should depend strongly on the 

properties of each estrogen, the pH and ionic strength of the culture medium, and sorption 

into cellular lipids and onto polymer-based vessels and pipette tips.  

 

As a first step towards assessing these concerns, we examined the possible losses 

of dichloroE2 under typical experimental bioassay conditions. Partitioning calculations 

indicate a significant (~ 42 %) reduction in the fraction of dissolved diClE2 due to 

sorption into cellular lipids alone (Table C-1). And preliminary sorption tests with pyrene, 

a compound having approximately the same KOW as diClE2, showed significant time-

dependent losses to the walls of the polystyrene vessels typically used in cellular assays. 

Losses of pyrene from a pure aqueous solution (10 mg L-1 pyrene) to vessel walls were 

46, 55, and 78 % after 1, 2, and 21 hours, respectively.  

 

Given the typical biomasses used in estrogenicity testing, one would expect some 

losses to the lipids of the test organisms.  Assuming typical incubation times and 

including the partitioning into cellular lipids as well as onto vessel walls, we estimate that 

81 % of diClE2 would be “lost” to cells and walls during a typical test and therefore be 

unavailable to bind to estrogen receptors in the assay. This is a remarkable result that 

suggests systemic underestimates of the toxicity of hydrophobic chemicals, including 

halogenated estrogens.   
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Table C-1. Estimated losses of estrogens from a typical cell-based reporter assay 
(adherent COS-7 cells within 48 well plates) due to partitioning into cellular lipids and 
time-dependent losses to polystyrene vessel walls. 
 
 E1 E2 diClE2 
Cell lipids 
   Fraction in watera 

 
0.994 

 
0.959 

 
0.584 

   Percentage lost 0.6 % 4 % 42 % 
Cell lipids and vessel wallsb (2 h) 
   Fraction in water  
   Percentage lost 

 
n/a 
n/a 

 
n/a 
n/a 

 
0.341 
66 % 

Cell lipids and vessel wallsb (21 h) 
   Fraction in water  
   Percentage lost 

 
n/a 
n/a 

 
n/a 
n/a 

 
0.190 
81 % 

 
a Fraction in water is calculated as:  
 

!!"#$% = !
!! !!"∗!!"#"$ !!"#

  

 
where KOW is the octanol-water partition coefficient, Mlipid is the lipid mass, Vexp is the experimental 
volume, and estimated typical conditions are 4.2 x 10-6 g lipid ml-1. 
 
b Time-dependent losses to polystyrene vessel walls were measured fluorometrically using a neat 10 mg L-1 
aqueous solution of pyrene (log KOW = 5.13), a suitable sorption proxy for diClE2 (log KOW = 5.23).  
 
n/a = not available 
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GC-FID and GC-TOF/MS traces of EE2 standards and pill 
extracts 
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Appendix D: GC-FID and GC-TOF/MS traces of EE2 standards and pill extracts  
 
Figure D-1. GC-FID chromatograms: EE2 positive control (A) pill extracts (B-H), and a 
column bleed blank extract (I) confirm the purity of each extract after silica gel clean up 
and just prior to closed-tube combustion for 13C and 14C analysis.  
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Figure D-1. (continued) 
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Figure D-1. (continued) 
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Figure D-2. GC-TOF/MS total ion chromatogram with inset mass spectra for the three 
peaks of the EE2 positive control sample (see panel A in Figure D-1 above) confirms the 
purity of extracts and suggests that E1 is a minor impurity, evident as four small peaks at 
~12 minutes in the GC-FID chromatograms above.  
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Appendix E 
 
 

UV-visible spectra of conjugated, free, and brominated 
estrogens 
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Appendix E: UV-visible spectra of conjugated, free, and brominated estrogens 
 
Stock solutions 

Estrogen standards were massed on a CAHN 25 microbalance (MIT 48-412), and 

dissolved in methanol in pre-baked (450 °C; 5 h) glass volumetric flasks. Stock solutions 

were inverted 30 times to mix, covered with aluminum foil, and allowed to sit at room 

temperature for a minimum of 2 hours before analysis by UV-visible spectroscopy. 

Solutions were stored at -20 °C when not in use.   

 

Spectroscopy  

UV-visible spectra of estrogen solutions (~ 10 mg mL-1 in methanol) were 

collected through a 1-cm pathlength quartz cuvette using a DU800 spectrophotometer 

(Beckman Coulter; Fullerton, CA, USA). Absorbance data were recorded in 0.5 nm 

increments from 200 – 800 nm. Significant uncertainty in the accuracy of absorbance 

data at critical wavelengths greater than 340 nm currently precludes reporting direct 

photolysis rate constant estimates based on this data.  
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Figure E-1. Representative UV-visible spectra of five estrogen families.  
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